Nr. certificat: 1049
OHSAS 18001:2007

Elaborare documentatie tehnica pentru obiectivul:

"POD PE DN 59 KM 48*391
 PESTERAUL BARZAVA LA DENTA"

Faza de proiectare: D.A.L.I.

Rev. 02 cnf. CTE DRDP Timisoara - adresa nr. $40 / 155$ din 04.03.2021

CTE DRDP Timisoara din 26.02.2021

DOCUMENTATIE DE AVIZARE AIUCRÅRILOR DE INTERVENTII (DALI)

PIESE SCRISE si PIESE DESENATE

Romania / Judetul Timis

BENEFICIAR:
Data:

DRDP Timisoara
Iulie 2021

PARTE SCRISA

"POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA"

BENEFICIAR: DRDP TIMISOARA

FAZA DE PROIECTARE: D.A.L.I.

Rev. 02 cnf. CTE DRDP Timisoara - adresa nr. $40 / 155$ din 04.03.2021
CTE DRDP Timisoara din 26.02.2021

LISTA DE SEMNATURI

"POD PE DN 59 KM 48+391
 PESTE RAUL BARZAVA LA DENTA"

BENEFICIAR: DRDP TIMISOARA

FAZA DE PROIECTARE: D.A.L.I.
Rev. 02 enf. CTE DRDP Timisoara - adresa nr.40/155 din 04.03.2021

CTE DRDP Timisoara din 26.02.2021

PIESE SCRISE SI PIESE DESENATE

SEF PROIECT:

ELABORAT:
Ing. Titi TOMA

VERIFICAT:
Ing. Daniela TOMA

DATA: lanuarie 2021

BORDEROU

"POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA"

BENEFICIAR: DRDP TIMISOARA

FAZA DE PROIECTARE: D.A.L.I.

PARTE SCRISA:

LISTA DE SEMNATURI
BORDEROU
MEMORIU TEHNIC
GRAFIC DE EXECUTIE - SOLUTIA 1 - ALTERNATIVA 1
GRAFIC DE EXECUTIE - SOLUTIA 1 - ALTERNATIVA 2
GRAFIC DE EXECUTIE - SOLUTIA 2
GRAFIC DE EXECUTIE - SOLUTIA 3
DEVIZ GENERAL - SOLUTIA 1 - ALTERNATIVA 1 SI 2
DEVIZ GENERAL - SOLUTIA 2

DEVIZ GENERAL - SOLUTIA 3

PARTE DESENATA:

PLAN DE INCADRARE IN ZONA
Sc. 1:25000
PLAN DE SITUATIE
Sc. 1:500
> RELEVEU ELEVATIE SI PLAN
Sc. 1:200
RELEVEU SECTIUNI TRANSVERSALE
Sc. 1:100
DISPOZITIE GENERALA-SOLUTIA 1 - ALTERNATIVA 1 SI 2
Sc. 1:200
SECTIUNI TRANSVERSALE - SOLUTIA 1 - ALTERNATIVA 1 SI 2
Sc. 1:100, Sc. 1:50
DISPOZITIE GENERALA- SOLUTIA 2
Sc. 1:200
SECTIUNI TRANSVERSALE - SOLUTIA 2
Sc. 1:100, Sc. 1:50
DISPOZITIE GENERALA-SOLUTIA 3
Sc. 1:200
SECTIUNI TRANSVERSALE - SOLUTIA 3
Sc. 1:100, Sc. 1:50

DATA: lanuarie 2021

DOCUMENTATIE DE AVIZARE A LUCRĂRILOR DE INTERVENTII

1. INFORMATIII GENERALE

1.1. Denumirea obiectivului de investiţie:

POD PE DN 59 KM $48+391$ PESTE RAUL BARZAVA LA DENTA
1.2. Ordonator principal de credite/investitor:

Ministerul Transporturilor, Infrastructurii si Comunicatiilor
1.3. Ordonator de credite (secundar/tertiar):

Compania Nationala de Administrare a Infrastructurii Rutiere SA (CNAIR SA) prin DIRECTIA REGIONALA DE DRUMURI SI PODURI TIMISOARA
1.4. Beneficiarul investitiei:

Compania Nationala de Administrare a Infrastructurii Rutiere SA (CNAIR SA) prin DIRECTIA REGIONALA DE DRUMURI SI PODURI TIMISOARA
1.5. Elaboratorul documentatiei:
S.C. CONSULTANTA PENTRU INFRASTRUCTURI TERESTRE - CONSIT S.A,

Str. Aramesti, nr.4, sector 5, Bucuresti, Tel/Fax: 0723369639 / 0378102864

2. SITUATIA EXISTENTA SI NECESITATEA REALIZARII LUCRARILOR DE INTERVENTIE

Alcatuirea structurii podului, dimensiunile generale si caracteristicile de functionalitate au fost stabilite prin masuratori si observatii vizuale in amplasamentul podului.

Drumul national DN59 - Timisoara - Moravita traverseaza raul Barzava la km 48+391, in localitatea Denta, judetulu Timis, pe un pod cu trei deschideri de 12.80m fiecare. Acest pod a fost construit in anul 1963.

Elementele generale ce caracterizeaza podul:

- Este realizat din beton armat si are trei deschideri de 12.80 m fiecare NU N.
- Lungime totala a podului este de 44.70 m iar latimea totala este dev1.30m; M
- Este amplasat normal pe cursul raului Barzava si in aliniament fata de traseul drumánlui;
- Din datele puse la dispozitie de beneficiar este dimensionat la clasa de incafcafe;

Asupra podului de pe DN59 km 48+391 ce traverseaza raul Barzava, s-áefectuat in tuna martie 2018, o expertiza tehnică de către Expert Tehnic ing. Stelian Popescu, ce a evidentiat starea tehnica a podidat la momentul respectiv.

Principalele concluzii ale expertizei tehnice, sunt enumerate in expertiza tehnica cat si in capitolul 4 din prezenta documentatie.

Potrivit acestei expertize, "conform Instructiunilor pentru stabilirea starii tehnice a unui pod - indicativ AND 522/2002, elaborate de Administratia Nationala a Drumurilor, pentru un índice de stare tehnica $1 s t=38$ puncte, podul se incadreaza in clasa starii tehnice IV., stare nesatisfacatoare.

Podul este in inventarul beneficiarului la clasa I de incarcare, cu 0 vechime mai mare de 55 de ani si nu a avut lucrari de reparatii sau reabilitari.

2.1. Prezentarea contextului: politici, strategii, legislatie

Transporturile reprezinta unul dintre elementele fundamentale ale procesului de integrare, fiind strans legate de crearea si finalizarea pietei interne, care promoveaza ocuparea fortei de munca si cresterea economica.

Infrastructura de transport invechita, este o piedica in calea dezvoltarii. Astfel, plecand de la premisa ca accesibilitatea este o conditie esentiala a dezvoltarii economice si sociale, iar reteaua de transport subdezvoltata si calitatea slaba a serviciilor sunt o bariere in calea dezvoltarii oraselor, precum si a satelor si comunelor, constatam ca efectele negative se reflecta in mobilitatea scazuta a fortei de munca si, prin urmare, in lipsa exploatarii acesteia, dar si prin reducerea accesului la servicii de baza, costuri ridicate si timpi de calatorie mari, cu efecte negative asupra competivitatii. Problemele de accesibilitate ale României și rata mare a accidentelor soldate cu victime sunt cauzate de slaba calitate a infrastructurii rutiere, de legăturile deficitare între rețeaua transeuropeană de transport (TEN-T) și estul și vestul țării, de progresul lent al modernizärii căilor ferate și de viteza mică a trenurilor de marfă și de pasageri. Unele părti ale țării sunt grav defavorizate, in special regiunile din nord aflate la granița cu Ucraina și Moldova și cele din Delta Dunării.

Obiectivele strategice identificate în Master, plan pentru sectorul de transport rutier sunt următoarele:

- Îmbunătățirea mobilitǎții populației și a traficului aferent transportului de mărfuri în cadrul rețelei TEN-T de bază și a rețelei extinse, prin construcția unei rețele de autostrăzi și drumuri expres;
- Asigurarea accesului pentru populație și pentru mediul de afaceri la rețeaua TEN-T de bază si la rețeaua extinsă, prin construcția coridoarelor de legătură națională;
- Asigurarea unei rețele de transport rutier sigure și operationale, care să contribuie la reducerea numărului de accidente rutiere, precum și la reducerea timpilor de călătorie;
- Asigurarea accesului internațional prin intermediul legăturilor cu țările vecine;
- Asigurarea unei rețele de transport propice mediului înconjurător, prin implementarea proiectelor de variantă de ocolire.
Transportul rutier reprezintă cel mai important și utilizat mod de transport având în vedere faptul că deplasările pe cale rutieră, efectuate pe teritoriul României, reprezintă aproximativ 75% din totalul deplasărilor efectuate în scopul transportului de călători și puțin sub 50% din deplasările destinat transportului de mărfuri (INS, date 2010) .

Întrucât un transport eficient este o componentǎ critică a dezvoltării economice, atât la nivel național cât și la nivel global, iar disponibilitatea sistemului de transport afectează tiparele de dezvoltare și poate fi o piedică sau un factor de influență a dezvoltării economice a fiecărei națiuni, sunt necesare investiții în acest sector cu scopul de inter-conecta factorii de producție într-o rețea creată între producători și consumatori, cu scopul de a crea o specializare mai eficientă a producției, de a elimina disparitățile economice la nivel regional și de a furniza mijloace de dezvoltare a economiei.

2.2. Analiza situatiei existente si identificarea necesitationsia deficientelor

Drumul national DN 59 Timisoara - Moravita traverseazaraul BaRzava fatm 483991 in localitatea Denta, judetul Timis pe un pod cu trei deschideri de cate 12.80 m fiecarě. Podul a fost construit in inanul 1963.

Conform "Instructiunilor pentru stabilirea starii tehnice à unui, pod" indicativ AND 522-2002 elaborate de Administratia Nationala a Drumurior, pentru *uñ indice, total de stare $T s t /=38$ puncte, podul se incadreaza in clasa starii tehnice IV., stare tehnica nesatisfacatoare

Situatia Existenta

Alcatuirea structurii podului, dimensiunile generale si caracteristicile de de functionalitate au fost stabilite prin masuratori si observatii vizuale in amplasamentul podului.

Drumul national DN59 - Timisoara - Moravita traverseaza raul Barzava la km 48+391, in localitatea Denta, judetulu Timis, pe un pod cu trei deschideri de 12.80 m fiecare. Acest pod a fost construit in anul 1963.

Elementele generale ce caracterizeaza podul:

- Este realizat din beton armat si are trei deschideri de 12.80m fiecare;
- Lungime totala a podului este de 44.70 m iar latimea totala este de 11.30 m ;
- Este amplasat normal pe cursul raului Barzava si in aliniament fata de traseul drumului;
- Din datele puse la dispozitie de beneficiar este dimensionat la clasa I de incarcare;

In urma expertizarii in anul 2018, s-au constatat multiple deficiente la podul existent, si au fost recomandate lucrari de interventie pentru repararea acestuia.

Situatia Proiectata

In cadrul Expertizei Tehnice, intocmita de catre dl. Popescu I. Stelian, au fost recomandate trei solutii, astfel:
Solutia I - cuprinde lucrari de interventie ce se pot executa in cadrul intretinerii periodice (ind. 112 conform AND 554);
Solutia II - cuprinde inlocuirea suprastructurii podului, schimbarea schemei statice si cresterea clasei de incarcare a podului;

Solutia III - Realizarea unui pod nou prin devierea circulatiei pe o varianta provizorie de traseu sau ruta ocolitoare.

Toate lucrarile prevazute a se executa in acest proiect vor fi facute in asa fel incat nu se va aduce atingere proprietatilor private, ele fiind executate exclusiv pe domeniul public al statului, aflat in administrarea CNAIR SA, prin DRDP TIMISOARA.

2.3. Obiective preconizate a fi atinse prin realizarea investitiei

Obiectivul general al proiectului este reprezentat de asigurarea conditiilor optime de desfasurare a traficului prin reabilitarea podului de pe DN $59 \mathrm{Km} 48+391$, peste raul Barzava la paramerrii de exploatare si siguranta a circulatiei, superiori etapei actuale.

Realizarea obiectivului se va concretiza intr-o serie de avantaje social-econemice,precuलि:

- imbunatatirea substantiala a nivelului de servicii catre populatio
- imbunatatirea starii de sanatate a populatiei si cresterea graduluíde confort

Toate demersurile au ca scop:

- crearea conditiilor pentru cresterea investitiilor
- punerea in siguranta a podului

3. DESCRIEREA CONSTRUCTIEI EXISTENTE

3.1. Particularitati ale amplasamentului

Drumul national DN 59 Timisoara - Moravita traverseaza raul Barzava la km 48+391 in localitatea Denta, judetul Timis pe un pod cu trei deschideri de cate 12.80 m fiecare. Podul a fost construit in anul 1963.

Relieful este de campie joasa facand parte din campia Timisului, caracterizata de valuri largi, fiind acoperita de o cuvertura de loess. Aceata caracteristica de campie joasa ii este atribuita faptului ca este o prelungire a campiei Tisei si este alcatuita din formatiuni aluvionare cu denivelari de mica amploare, determinate deprezenta croburilor ce dispune de altitudini cuprinse intre 80 si 100 m .

Amplasamentul nu este afectat de fenomene fizico-mecanice care sa-i pericliteze stabilitatea prin fenomene de alunecare.

3.1.a) Descrierea amplasamentului

Lucrarile care fac obiectul prezentului studiu sunt amplasate in judetul Timis, pe teritoriul administrativ al comunei DENTA.

Este un sat de câmpie, situat în sudul județului Timiș, la circa 40 km sud de municipiul Timișoara și 5 km sud de orașul Deta, pe drumul național DN59 (european E70), care leagă Timișoara de punctul de punctul vamal cu Serbia, Stamora Moravița. Este străbătut de râul Bârzava, canalizat de la Denta până în Serbia. Se învecinează la nord cu Deta, la nord-est cu Rovinița Mare, la est cu Breștea și Rovinița Mică iar la sud cu Stamora Germană.

Suprafata studiata pentru prezentul obiectiv este de 1625 mp in Comuna DENTA, iar categoria de folosinta este de drum public - cai de comunicatii, conform ridicarilor topografice anexate .

Suprafaţa ocupată prin realizarea investitijei este în proprietatea domeniului public, din punct de vedere juridic în administrarea CNAIR SA, prin DRDP TIMISOARA.

3.1.b) Relatiile cu zonele invecinate, accesuri existente, cai de acces posibile

Comuna DENTA, situata in sudul judetului Timis, se gaseste la o distanta circa 40 km sud de municipiul Timișoara și 5 km sud de orașul Deta, pe drumul național DN59 (european E70), care leagă Timișoara de punctul vamal cu Serbia, Stamora Moravița. Se învecinează la nord cu Deta, la nord-est cu Rovinița Mare, la est cu Breștea și Rovinița Mică iar la sud cu Stamora Germană.

3.1.c) Datele seismice şi climatice

Seismicitate

Din punct de vedere seismic , conform P100/1/2013, zona prezintă următoarele caracteristici :

- acceleraţia terenului ag $=0,20 \mathrm{~g}$
- perioada de colt : Tc $=0,70 \mathrm{~s}$.

Climă

Clima este rezultatul suprapunerii circulatiei maselor de aer atlantic cu masele de aer mediteranian si adriatic ceea ce genereaza caracterul moderat al regimului temperaturilor, perioadele de incalzire din timpul iernii, inceperea timpurie a primaverii, precum si cantitatile medii multianuale de precipitatii relative ridicate
Din punct de vedere climatic, se incadreaza in zona climatului temperat continental moderat cu influente submediteraneene, rezultat al suprapunerii circulatiei maselor de aer atlantic cu invaziile de aer mediteranean.
Acest climat genereaza caracterul moderat al regimului termic, perioadele de incalzire in timpul iernii, precum si cantitati medii multianuale de precipitatii relative ridicate, cuprinse intre $600-1400 \mathrm{~mm} / \mathrm{an}$.

Conditille climatice din zona pot fi sintetizate prin urmatorii parametri:

Temperatura aerului

Valorile medii anuale ale temperaturii aerului sunt cuprinse intre 10-11 grade Celsius, exceptie facand arealul din vestul Campiei Banatului, unde temperaturile sunt ceva mai ridicate.

Precipitatii

Media anuala de precipitatii variaza de la 500 mm in zona de campie, pana la $1000-1200 \mathrm{~mm}$ in zona muntoasa din estul spatiului hidrografic Banat.
Precipitatiile sub forma de zapada cad frecvent pana la jumatatea lunii martie, grosimea decadica a stratului in luna ianuarie variind intre $4-8 \mathrm{~cm}$.

Adancimea de inghet

Adancimea de inghet in zona cercetata este de 60 cm ... 70 cm , conform STAS 6054 - 77

Din punct de vedere hidrologic si hidrogeologic

Reteaua hidrografica din spatiul hidrografic Banat are o lungime a cursurilor de apa codificate de 6311 km , se compune din 9 cursuri de apa si afluentii acestora ce traverseaza frontiera de stat cu Serbia si afluentii Dunarii dintre Bazias si Cerna.

Densitatea retelei hidrografice are valoarea minima de $0,165 \mathrm{~km} / \mathrm{kmp}$, valoarea maxima de 0,486 $\mathrm{km} / \mathrm{kmp}$, respectiv o medie de $0,278 \mathrm{~km} / \mathrm{kmp}$.
Bazinele hidrografice Timis (5673 kmp) si Bega (2362 kmp) , care impreuna reprezinta cca. 43% din suprafata spatiului hidrografic Banat , au o situatie speciala din punct de vedere al calculului parametrilor scurgerii maxime , datorita interventiei antropice care a modificat distributia naturala a scurgerii in perioadele de ape mari si viituri. Despre bazinele Timis si Bega se poate vorbi ca despre un singur bazin TimisBega intrucat sunt legate prin doua derivatii in cadrul unei scheme de interconexiune (derivatia Timis-Bega de la Costei la Balint si derivatia Bega-Timis de la Topolovat la Hitias).
Raul Bârzava este un râu ce izvorește în Munții Semenic, în județul Caraș- Severin. Străbate județul Timiș și provincia Voivodina din Serbia și se varsă în râul Timiș. Are o lungime de 166 km din care 127 km în România. Pe o portiune de $3,8 \mathrm{~km}$ râul marchează frontiera româno-sârbească.

Actiunea vantului

Conform Cod de proiectare CR - 1-1-4/2012 privind „Evaluarea actiunii vântului asupra constructilor", valoarea de referinta a presiunii dinamice a vântului la un interval mediu de recurenta 50 ani (IMR = 50 ani), pentru localitatea Denta este de $q b=0,7 \mathrm{kPa}$, constructile având incadrare in clasa de importanta- expunere I.

Actiunea zapezii

Conform Cod de proiectare CR - 1-1-3/2012 privind „Evaluarea actiunii zapezii asupra constructilor", pentru localitatea Denta se precizeaza o valoare caracteristica a incarcarii din zapada pe sol sk $=1.5 \mathrm{KN} / \mathrm{m} 2$, constructilie având incadrare in clasa de importanta - expunere I.

Incadrarea in zone de risc natural

Incadrarea in zonele de risc natural la nivelul de macrozonare a ariei pe care se gaseste DN59, se face in conformitate cu Legea nr. 575/ noiembrie 2001, Legea privind aprobarea Planului de amenajare a teritoriului national - Sectiunea a V-a . zone de risc natural

Riscul este o estimare matematica a posibilitatii producerii de pierderi umane si materiale pe o perioada de referinta viitoare si intr-o zona data pentru un timp de dezastru. Factorii de risc avuti in vedere sunt:
cutrmurele de pamant; inundatiile si alunecarile de teren.
Cutremurele de pamant : zona de intensitate seismica pe scara MSK este de 8 in zona studiata cu o revenire de cca. 50 ani.

Inundatiile : aria studiata se incadreaza in zona cu cantitati de precipitatii cuprinse intre $100-150 \mathrm{~mm}$ in 24 de ore, cu arii afectate de inundatii datorate revarsarii cursurilor de apa si producerii de torenti de panta;
Alunecarile de teren: aria studiata nu se incadreaza in zona cu potential de producere a alunecarilor de teren, probabilitate de alunecare redusa.

Din punct de vedere geomorfologic si geologic

Geomorfologic, spatiul hidrografic Banat se caracterizeaza dupa repartitia formelor de relief, prin campii joase (56%), campii inalte (6%), dealuri (25%), munti josi (9%), munti inalti (4%).

Spațiul Hidrografic Banat este caracterizat de prezența tuturor treptelor de relief, acestea scăzând în altitudine de la sud-est spre nord-vest.

Altitudinile maxime se întâlnesc în Masivul Retezat (Vf. Cuntu, 2190 m).
Trecerea de la munte spre câmpie se realizează prin intermediul dealurilor piemontane și a culoarelor intramontane, zone ce favorizează o scurgerea mai rapidă a apelor și un potențial hidrologic relativ bogat.

În partea central-sudică a Spațiului Hidrografic Banat se întind Munții Banatului, care deși cu o altitudine mai redusă (altitudine maximă 1446 m), au un aport semnificativ în rețeaua hidrografică a zonei.
Câmpia Banatului acoperă aproximativ 50% din suprafața S.H. Banat, fiind o câmpie joasă (altitudinea minimă 77 m în zona de frontieră), care, în zona ei centrală, până la amenajarea interfluviului Timiș-Bega, era o întinsă zonă mlăștinoasă.

Campia joasa cu altitudini intre $80-100 \mathrm{~m}$, cuprinde teritoriul de la nord-vest de Timisoara, luncile inferioare ale cursurilor de apa Bega Veche, Bega, Timis, Barzava, Moravita si Caras.
Campia inalta cu altitudini intre $100-200 \mathrm{~m}$, cu panta de 0,2-0,4 m/km reprezentand zona de tranzitie intre coline si campia propriu-zisa , cuprinde portiunea de la sud de Varias - Cruceni si traverseaza sase bazine hidrografice.

Zona de dealuri cu altitudini cuprinse intre $200-600 \mathrm{~m}$, caracterizate prin pante domoale si terase : dealurile Lipovei , Bucovatului , Buzias ,Fizes, precum si depresiunile Bistrei si Carasovei.
Muntii josi , cu altitudini cuprinse intre 600-1000m , ocupa o suprafata de 1242 kmp din suprafata bazinului , se prezinta ca un podis inalt cuprinzand anumite parti ale masivelor Poiana Rusca, Semenic, precum si din muntii Armenis, Dognecea, Anina.
Zona muntilor inalticu altitudini de peste 1000 m , include masivul Tarcu, partial din Poiana Rusca si Semenic.
Geologic, spatiul hidrografic Banat , prin amplasarea si suprafata relativ mare, dispune de conditii geologice variate si complexe. In bazinul Timis-Bega, varsta formatiunilor creste de la vest la est , cele mai vechi fiind cele cristaline ale panzei getice si autohtonului danubian. Cristalinul panzei getice este reprezentat in muntii Semenic, Poiana Rusca si Dealurile Pogonisului printr-o serie mezometamorfica constituita din gneise oculare, sisturi amfibolice, micasisturi, migmatite si filite metadolomice si metacalcaroase. Cristalinul autohtonului danubian apare in muntii Tarcu si este reprezentat prin amfibolite, micasisturi, gneise, sisturi cuartice.

Formatiunile cristaline sunt strapunse in muntii Tarcu si Semenic de formatiuni eruptive reprezentate prin corpuri granitoide.

Depozitele sedimentare incep cu carboniferul (sud-vestul muntilor Tarcu) reprezentat prin calcare , sisturi ardeziene, gresii in alternanta cu sisturi argiloase si intercalatii de huila, peste care urmeaza in continuitate de sedimentare, permianul reprezentat prin conglomerate, gresii si sisturi argiloase asociate cu roci vulcanice. In zona muntoasa, cu inaltimi mari, cu toata litologia, reprezentata prin sisturi cristaline si corpuri eruptive , din punct de vedere geotehnic, ofera conditii optime realizarii acumularilor , situatia se complica din cauza tectonicii foarte complexe , a falilor si fisurilor care strabat corpurile de roci.

3.1.d) Studii de teren

3.1.d.1. Studiu geotehnic

Studiul geotehnic a fost elaborat de către S.C PROIECTARI LUCRARI DE ARTA S.R.L, in conformitate cu prevederile STAS 3300/2-85 a Indicativului NP074-2014 privind principile, exigentele si metodele cercetarii geotehnice a terenului de fundare si a modului de intocmire si verificare a documentatiilor geotehnice pentru constructii. Studiu geotehnic a fost verificat conform exigenţelor Af de către Verificator Tehnic Atestat Ing. Stelian Popescu. Studiul Geotehnic este atasat ca parte distincta prezentei documentatii.

Conform Normativului NP 074 I 2014 intitulat ,,NORMATIV PRIVIND PRINCIPIILE, EXIGENTELE SI METODELE CERCETARII GEOTEHNICE A TERENULUI DE FUNDARE", se stabileste nivelul de risc geotehnic, pentru infrastructura cladirii, conform Tabelului 1: Nr. cortifical: 1069

Factorii de avut in vedere	Tip	Punctaj
Conditii de teren	Teren bun (pamant argilos nsipos) conform tabel A.1.1 NR.8	2
Apa subterana	Cu epuizmente normale	2
Clasificarea constructiei dupa categoria de importanta	Normala	3
Vecinatati		Fara riscuri
Zona seismica		Ag=0,16g
TOTAL PUNCTAJ		2

Totalul de 10 (zece) puncte, incadreaza lucrarea din punct de vedere al riscului geotehnic in tipul ",MODERAT", iar din punctul de vedere al categoriei geotehnice in „CATEGORIA GEOTEHNICA 2".

Riscul geotehnic depinde de doua grupe de factori: pe de o parte factorii legati de teren, dintre care mai importante sunt conditilile de teren si apa subterana, iar pe de alta parte factorii legati de structura si de vecinatatile acestora.

In zona studiata conform tabel A.1.1. nr. 8 rezulta un teren bun (pamant argilos nisipos). Prezinta un grad de stabilitate general bun,

Adancimea de fundatie se recomanda sa fie la minim 2.00 m sub adancimea de inghet in albia raului.
Presiunea conventionala pentru terenul studiat este de $350 \mathrm{kPa}(3.5 \mathrm{dN} / \mathrm{cm} 2$)
Nu sunt necesare masuri pentru imbunatatirea sau consolidarea terenului de fundatie.
Pentru Intocmirea Studiului Geotehnic pe amplasamentul cercetat s-au efectuat doua foraje geotehnice F 1, F 2 , pana la adancimea de $-9,00 \mathrm{~m}$, respectiv $-8,00 \mathrm{~m}$ de la suprafata terenului. Pe parcursul executarii forajelor s-au prelevat probe de pamant care au permis stabilirea coloanei stratigrafice al acestuia.

3.1.d.2. Studiu topografic - pus la dispozitie de catre Beneficiar

Ridicarea topografică a fost realizată de către SC PROIECTARI LUCRARI DE ARTA SRL, în sistem de proiecţie STEREO 70, şi a fost vizată de către OCPI. Studiului topografic, anexat prezentei documentatii, conţine tabele cu coordonatele XZY ale punctelor ridicării: puncte de indesire GNSS, statii de drumuire, puncte radiate, puncte de contur ale amprizei.

Suprafata ocupata de lucrare se desfăşoară între următoarele coordonate caracteristice :

Pct	X	Y
1	435704.732	206317.165
2	435706.600	206331.045
3	435652.091	206338.381
4	435650.224	206324.506

3.1.e) situatia utilitatilor tehnico-edilitare existente

La data vizitarii obiectivului s-au observat conducte si cabluri fixate de consolele podului. Pentru identificarea detinatorilor a fost solicitat un Certificat de Urbanism.

3.1.f) analiza vulnerabilitaţ̧ilor cauzate de factori de risc

Este cunoscut faptul că mediul inconjurător si societatea umană suportă adesea actiunea unor fenomene extreme periculoase cu origine diferită, naturală sau antropică, ce pot produce dereglări distructive si brutale in anumite sisteme sau situatii prestabilite.

Mr. cortificat-1069

Aceste evenimente (cutremure, alunecări de teren, furtuni, inundatii, secete, incendii, accidente tehnologice, situatii conflictuale etc.) se produc de regulă pe neasteptate si pot provoca numeroase victime in randul oamenilor si animalelor, un volum mare de pagube materiale, dezechilibre ecologice si chiar grave tulburări ale stării psihice si morale a populatiei ce intră sub incidenta fenomenului respectiv.

Tara noastră are, după cum se poate observa in decursul ultimilor ani, o istorie bogată în calamităti naturale si evenimente catastrofale cauzate de activitatea umană.

Cauzele primelor fenomene, cele de origine naturală, trebuie căutate in structura geomorfologică a teritoriului tării noastre. Sunt bine cunoscute in acest sens, de exemplu, punctele vulnerabile prin traditie, la cutremure si inundatii.

Zona geografică in care se găseste amplasată tara noastră este caracterizată, in ultimii ani, de un proces de modificări ale unor caracteristici geo-climatice, ceea ce a condus la manifestarea unor factori de risc care au evoluat spre dezastre. S-a constatat că, in ultimii ani, aceste fenomene si-au schimbat structura probabilistică si intensitatea in raport cu acelasi tip de fenomene inregistrate cu un deceniu in urmă.

Efectele dăunătoare pe care aceste fenomene le au asupra populatiei, mediului inconjurător si bunurilor materiale fac necesară cunoasterea acestor fenomene si a modului in care putem preveni, sau ne putem apăra in caz de urgentă.

Nu există nici o ratiune pentru a crede că frecventa si mărimea dezastrelor naturale (endogene) este pe cale să scadă in viitorul apropiat, toate zonele virtual-locuite sau nu, sunt zone de risc. Din analiza bazei de date, se poate trage concluzia că magnitudinea si frecventa dezastrelor naturale va creste pe fondul schimbării climatice globale.

Fenomenele care fac să crească vulnerabilitatea societătii fată de dezastrele naturale sunt: cresterea populatiei, urbanizarea excesivă, degradarea mediului, lipsa de structuri locale specializate în managementul dezastrelor, sărăcia, economii instabile si dezvoltate haotic.

Tipurile de risc sunt definite ca fiind:

- incendii, cutremure, inundatii, accidente, explozii, avarii, alunecări sau prăbusiri de teren, îmbolnăviri în masă, prăbusiri ale unor constructii, instalatii ori amenajări, esuarea sau scufundarea unor nave, căderi de obiecte din atmosferă ori din cosmos, tornade, avalanse, esecul serviciilor de utilităti publice si alte calamităti naturale, sinistre grave sau evenimente publice de amploare determinate ori favorizate de factorii de risc specifici.

Principalele tipuri de risc generatoare de situatii de urgentă în România, grupate în functie de natura lor sunt:

A. RISCURI NATURALE

A.1. Fenomene meteorologice periculoase

- furtuni - vant puternic si/sau precipitatii masive si/sau căderi de grindină;
- inundatii;
- tornade;
- secetă;
- inghet, poduri si baraje de gheată, căderi masive de zăpadă, chiciură, polei.

A 2. Incendii de pădure - incendii la fondul forestier, vegetatie uscată sau culturi de cereale păioase.
A 3. Avalanse
A 4. Fenomene distructive de origine geologică

- alunecări de teren;
- cutremure de pămant.
B. RISCURI TEHNOLOGICE (HAZARDE ANTROPICE)

B 1. Accidente, avarii, explozii si incendii

- industrie
- transport si depozitare produse periculoase
-transporturi - transporturi terestre, aeriene si navale, inclusiv metroul, tunele si transport pe cablu
- nucleare

B 2. Poluare ape
B 3. Prăbusiri de constructii, instalatii sau amenajări
B 4. Esecul utilitătilor publice - utilităti publice vitale si de amploare: retele importante de radio, televiziune, telefoane, comunicatii, de energie electrică, de gaze, de energie termică, centralizată, de alimentare cu apă, de canalizare si epurare a apelor uzate si pluviale.
B 5. Căderi de obiecte din atmosferă sau din cosmos
$(\mathrm{MC}$

B 6. Munitie neexplodată

C. RISCURI BIOLOGICE

- Epidemii
- Epizootii.

Recent se discută de un alt tip de dezastru, si anume cel ecologic, care poate fi cauzat in special de oameni si care afectează pe multiple căi pămantul, atmosfera, flora si fauna.

Distrugerea pădurii planetare si distrugerea unor specii animale pot fi categorisite astfel, iar o serie de dezastre tehnologice, cum ar fi scurgerile de diverse deseuri toxice, pot cauza sau contribui la dezastrele ecologice.

In cele mai multe situatii se stie unde se pot produce diferite hazarde, dar nu se stie când.
Vulnerabilitatea pune in evidentă cat de mult este expus omul si bunurile sale in fata diferitelor hazarde, indicand nivelul pagubelor pe care poate să le producă un anumit fenomen.

A fi vulnerabil inseamnă a fi expus unor pericole potentiale care pot să afecteze sănătatea, să ameninte viata sau să producă pagube.

Fiecare dintre noi este vulnerabil intr-o oarecare măsură fată de diferite fenomene.
Distrugerea mediului determină o crestere a vulnerabilitătii. Spre exemplu, despăduririle determină o intensificare a eroziunii si alunecărilor de teren, producerea unor viituri mai rapide si mai puternice si o crestere a vulnerabulitătii asezărilor si căilor de comunicatii.

Vulnerabilitatea este diferită in functie de modul de echipare si de pregătire al populatiei.
Evaluarea riscurilor este un proces de aplicare a unor metodologii de evaluare a riscurilor aşa cum au fost definite, probabilitatea, frecvenţa de manifestare a unui risc şi expunerea oamenilor dar şi a bunurilor lor la acţiunea acestuia, ca şi consecinţele expunerii respective.

Există trei paşi în evaluarea riscului: identificarea riscului, analiza şi evaluarea vulnerabilităţii.
Pentru identificarea riscului trebuie mai întâi identificate riscurile care apar, existând o serie de metodologii de identificare şi evaluare a riscurilor. Fiecare dintre aceste metodologii ia în considerare parametri precum frecvenţa, durata, severitatea, impactul pe termen lung sau scurt, pagubele.

S-a propus o matrice a riscului care ia î considerare frecvenţa şi severitatea evenimentului, pe baza acesteia s -au stabilit patru clase de risc, dar această abordare nu ia în considerare durata şi suprafaţa de manifestare a evenimentului, astfel încât a fost luată în considerare o altă metodă de identificare şi anume sistemul valoric de evaluare.

O a doua etapă şi anume cea de analiză a riscului estimează probabilităţle şi consecinţele aşteptate pentru un risc identificat sau expunerile și efectele. Consecinţele vor varia în funcție de magnitudinea evenimentului şi de vulnerabilitatea elementelor afectate.

Expunerile şi efectele sunt interdependente, adică tipul factorului de stres determină efectele care vor fi evaluate ca şi timpul şi spaţiul în care acestea vor apărea. În analiza riscului există câteva consideraţii care nu trebuie omise.

Scopul evaluării riscurilor îl constituie obţinerea unor standarde măsurabile prin care riscul poate fi comparat cu altele estimate similar. Evaluarea vulnerabilităţii reprezintă rezultatul analizei riscului. Este totalitatea riscurilor implicate de un eveniment extrem şi poate fi considerată ca şi însumarea tuturor riscurilor identificate. Aceasta poate fi internă sau externă.

In concluzie, in analiza vulnerabilitatii cauzate de factorii de risc, pentru lucrarile cuprinse in prezenta documentatie, se poate spune:

- Nu exista vulnerabilitate cauzata de factorii de risc datorata alunecarilor de teren, deoarece zona studiata este o zona stabila din punct de vedere al alunecarilor de teren.
- Nu exista vulnerabilitate cauzata de factorii de risc datorata incendiilor, deoarece zona studiata apartinand este o zona de campie fara padure si fara zone in exploatare de petrol.
- In analiza factorilor de risc, se poate afirma ca in zona studiata nu există vulnerabilitatea de a se generata inundaţii. In sectiunea de scurgere a raului se asigura scurgerea debitului cu asigurarea de 2%, eliminaduse orice posibilitate de a se produce innudari ale platformei, eroziuni ale taluzelor si afuieri.

3.1.g) informatii privind posibile interferente cu monumente istorice;

Nu este cazul.

3.2. Regimul juridic

Nr. cortifical:
iso $14001: 2004$

3.2.a) natura proprietatii

Toate lucrarile prevazute a se executa in acest proiect vor fif facute in asa fel incat nu se va aduce atingere proprietatilor private, ele find executate exclusiv pe domeniul public al statului, aflat in administrarea CNAIR SA, prin DRDP TIMISOARA.

3.2.b) destinatia constructiei existente

Destinatia obiectivului este drum public de interes national si face parte din reteaua de drumuri a Romaniei, deservind transportul de bunuri, marfuri si persoane.

3.2.c) Includerea constructiei existente in lista monumentelor istorice, etc., dupa caz

Nu este cazul.

3.2.d) Informatii/obligatii/constrangeri extrase din doc. de urbanism

Nu este cazul.

3.3. Caracteristici tehnice si parametrii specifici

3.3.a) Categoria şi clasa de importanţă

Podul amplasat la km 48+391 pe DN 59, se incadreazii la categoria de importánta "B" - constructii de importanta deosebita, in conformitate cu prevederile art. 22, sectiunea 2 "Obligatitte siा trispunderi)e proiectantului" din Legea nr. 10 din 18.01.1995, "Legea privind calitatea in constructii" si in baza "Métodologici de stabilire a categoriei de importanta a constructillor" aprobata cu Ordinul MLPATnr. $31 / \mathrm{N}$ dinin $02.10 .1995_{5}$

Conform STAS 4213-83 "Constructii hidrotehnice - Incadfarea in clase de importanta" podul se incadreaza in categoria 3 a constructillor hidrotehnice, respectiv in clasa de e importanta llif

3.3.b) Cod în lista monumentelor istorice, după caz

Nu este cazul.

3.3.b) Suprafata construita

Suprafata studiata pentru prezentul obiectiv este de 1625 mp in Comuna DENTA, iar categoria de folosinta este de drum public - cai de comunicatii, conform ridicarilor topografice anexate.

3.3.c) Suprafata construita desfasurata

Nu este cazul.

3.3.d) Valoarea de inventar a constructiei

Nu este cazul.

3.4. Analiza stării construcției pe baza concluziilor expertizei tehnice

Asupra podului de pe DN59 km 48+391 ce traverseaza raul Barzava, s-a efectuat in luna martie 2018, o expertiza tehnică de către Expert Tehnic ing. Stelian Popescu, ce a evidentiat starea tehnica a podului la momentul respectiv.

Principalele concluzii ale expertizei tehnice, sunt enumerate in expertiza tehnica cat si in capitolul 4 din presenta documentatie.

Potrivit acestei expertize, "conform Instructiunilor pentru stabilirea starii tehnice a unui pod - indicativ AND 522/2002, elaborate de Administratia Nationala a Drumurilor, pentru un índice de stare tehnica Ist=38 puncte, podul se incadreaza in clasa starii tehnice IV, stare tehnica nesatisfacatoare.

La baza întocmirii Expertizei Tehnice au stat:

- ridicarea topografica;
- studiul geotehnic;
- observațiile din teren.
- fotografii care sa puna in evidenta defectele si degradarile existente si care sa ajute la identificarea si evaluarea corecta a stadiului de evolutie a proceselor de degradare identificate pe structura podului.

3.5. Starea tehnica din punctul de vedere al asigurarii cerintelor fundamentale

Cerinţele esențiale de calitate în construcții - principalele caracteristici care privesc calitatea în construcţii conform Legii 10/1995 actualizata, sunt următoarele:
a) rezistenta mecanica si stabilitate, în cadrul căreia se pot enumera următoarele criterii de performanta:

- aptitudinea pentru exploatare
-evitarea deformaţillor si deplasărilor excesive;
-evitarea degradărilor cauzate de oboseala sau alte efecte depinzând de timp, care nu
influenteaza durabilitatea si funcţionalitatea.
- capacitati de rezistenta si stabilitate
-siguranţa structurii si siguranţa utilizatorilon'
- durabilitatea structurala
-alcătuirea constructiva de detaliu si a formei elêflienteler componente, influentele mediului natural si de exploatare aşteptate, intretinerea pe durata de viáta proiegctata.
b) siguranţa în exploatare
- siguranţa cu privire la lucrările de intretinere
- siguranţa în desfasurarea activitatilor.

Alcatuirea constructiva a podului:

Podul este realizat din beton armat si are trei deschideri, schema statica tip cadru. Alcatuirea structurii podului, dimensiunile generale si caracteristicile de functionalitate au fost stabilite prin masuratori si observatii vizuale in amplasamentul podului.

Din datele puse la dispozitie de catre Beneficiar au rezultat urmatoarele elemente geometrice:

- are lungimea totala de 44.70 m ;
- este alcatuit din trei deschideri de 12.80 m ;
- are latimea totala este de 11.30 m .

Drumul national DN 59 Timisoara - Moravita traversează râul Bârzava la km 48+391 in localitatea Denta, judetul Timis pe un pod cu trei deschideri de câte 12.80m fiecare. Podul a fost construit in anul 1963.

Infrastructura podului
Podul are infrastructura compusa din cate doua culei masive si doua pile cu elevatii lamelare din beton si beton armat.

Culeele si pilele sunt fundate direct.

Suprastructura podului

Suprastructura podului este realizata dintr-o dala de beton armat continua pe cele trei deschideri.

Calea pe pod

Calea pe pod este sustinută de dala de beton armat.
Pe pod, suprafata de rulare este asigurata de o cale din beton asfaltic cu pante transversale de circa de $2,5 \%$ de o parte si de alta a axului caii

Partea carosabila pe pod are o lungime de 44.70 m , sio latime de 7.80 m .
Parapetul pietonal este din beton
Podul are doua trotuare pietonale de cate 1.30 m fiecare.
Partea carosabila este marginita de parapete directionali tip borduri inalte din beton armat.

MC
MC

Racordarea cu terasamentele

Racordarea cu terasamentele este realizata cu ziduri intoarse si sferturi de con pereate. Instalatii pe pod
De pod, sunt amplasate tevi si conducte pentru transport
Albia paraului
In dreptul podului, albia raului este amenajata.

Cele mai importante defecte constatate:

Infrastructura podului:
Culeile din beton armat prezinta urmatoarele defecte:

1. Stratul de acoperire a armaturilor lipseste in anumite zone;
2. Armaturi dezgolite si corodate;
3. Infiltrații, pete de rugină, neuniformitati.

Pilele din beton armat prezinta urmatoarele defecte:

1. Infiltratii
2. Segregari ale betonului

Suprastructura podului:

Dala din beton armat prezinta urmatoarele defecte:

1. Consolele de trotuar prezintă infiltratii, pete de culoarésì decalcifieri;',
2. Zone cu desprindere a stratului de acoperire a armaturilor
3. Suprafete cu pete de rugina,
4. Armaturi corodate,
5. Segregări, pete de culoare, denivelari, infiltratii

Calea pe pod:

Calea de pod prezinta urmatoarele defecte:

1. Denivelari ale imbracamintii, fagase;
2. Rosturile de dilatatie degradate;
3. Infiltratii la intrados pe consolele de trotuar;
4. Bordura înaltă prezintă armaturi vizibile si corodate;
5. Gurile de scurgere colmatate;
6. Trotuarele pietonale prezinta denivelari, crapaturi;
7. Parapetul pietonal din beton este degradat.

Racordarea cu terasamentele

Aripile din zidarie degradate

Instalatii pe pod

Prin tema de proiectare se specifica faptul ca instalatiile nu fac obiectul prezentei investitii.

Albia paraului

Albia paraului este relativa curata, cu vegetatie spontana in albia minora.

Rampe de acces

Nu s-au observant degradari la terasamentele rampelor de acces la pod.
Calea pe rampe prezinta degradari ale imbracamintii rutiere de tip fagase.

3.6. Actul doveditor al fortei majore

Nu este cazul

4. CONCLUZIILE EXPERTIZEI TEHNICE

Conform "Instructiunilor pentru stabilirea starii tehnice a unui pod" indicativ AND 522-2002 elaborate de Administratia Nationala a Drumurilor, pentru un indice total de stare tehnica Is,= 38 puncte, podul se incadreaza in clasa starii tehnice IV, stare tehnica nesatisfiicatoare.

Incadrarea podului in clasa de importanta din punct de vedere al gradului de aparare normat, respectiv stabilirea asigurarilor care trebuiesc luate se face conform prevederilor STAS 4273-82. In conformitate cu standardul de mai sus:

- Conform tabelului 11 rezulta: categoria constructillor hidrotehnice aferente cailor de circulatie publica, drumuri nationale, pentru traversati si aparari in zona cursurilor de apa categoria constructiilor hidrotehnice este 3.
- Conform tabelului 13 rezulta: pentru lucrarea pod pe DN constructille si instalatiile hidrotehnice se incadreaza in clase de importanta III (incadrarea este in functie de durata de exploatare care este definitiva; de rolul functional care este principal si de categoriá hidrotehnicee care este 3).
Mentionam ca podul situat pe un DRUM NATIONAL este incadrat la clasa 3.

4.a) Clasa de risc seismic

Conform normativului P100-1/2013 podul este amplasat in zona seisfifess cu o perioada de colt $\mathrm{Tc}=0,7 \mathrm{sec}$ si 0 acceleratie a terenului pentru proiectare $\mathrm{ag}=0,20 \mathrm{~g}$.

4.b) Prezentarea a minim două soluţii de intervenţíé

Avand in vedere starea tehnica a podului, se impune aplicarea unor lucraride reabilitare care sa asigure imbunatatirea starii tehnice si sa asigure conditii de siguranta si confort pentru circulatia rutiera si pietonala pe pod. Pe baza expertizei tehnice, intocmite de către Expert Tehnic ing. Stelian Popescu, ce a evidentiat starea tehnica a podului, s-au analizat trei solutii, iar in functie de tehnologia aplicata, pentru solutia 1 se evidentiaza 2 alternative de executie:
$>$ Solutia I - cuprinde lucrari de interventie ce se pot executa in cadrul intretinerii periodice (ind. 112 conform AND 554);
> Solutia II - cuprinde inlocuirea suprastructurii podului, schimbarea schemei statice si cresterea clasei de incarcare a podului;
> Solutia III - Realizarea unui pod nou prin devierea circulatiei pe o variant provizorie de traseu sau ruta ocolitoare.

4.c). Solutiile tehnice si masurile propuse de expertul tehnic

Conform "Instructiunilor pentru stabilirea starii tehnice a unui pod" indicativ AND 522-2002 elaborate de Administratia Nationala a Drumurior, pentru un indice total de stare tehnica Is,= 38 puncte, podul se incadreaza in clasa starii tehnice IV, stare tehnica nesatisfacatoare.

Avand in vedere starea tehnica a podului, se impune aplicarea unor lucrari care sa asigure imbunatatirea starii tehnice si sa asigure conditii de siguranta si confort pentru circuiatia rutiera si pietonaia pe pod:
$>$ Solutia I - cuprinde lucrari de interventie ce se pot executa in cadrul intretinerii periodice (ind. 112 conform AND 554);
> Solutia II - cuprinde inlocuirea suprastructurii podului, schimbarea schemei statice si cresterea clasei de incarcare a podului;
>Solutia III - Realizarea unui pod nou prin devierea circulatiei pe o variant provizorie de traseu sau ruta ocolitoare.

4.d) Recomandarea interventiilor necesare pentru asigurarea functionarii conform exigentelor de calitate

In functie de strategia pe termen mediu si lung, de resursele financiare disponibile in cadrul administrarii optimizate a podurilor, Compania Nationala a Infrastructurii Rutiere poate aplica, pentru urmatorii 15 ani, Scenariul I de interventie, care cuprinde lucrari ce se pot executa in cadrul reparatillor curente (ind 118 conform AND 554).

Totodata, pentru aducerea la starea tehnica foarte buna, expertul tehnic ing. Stelian Popescu recomanda aplicarea solutiei I, ce cuprinde lucrari de interventie ce se pot executa in cadrul intretinerii periodice (ind. 112 conform AND 554);

5. IDENTIFICAREA SCENARIILOR ŞI ANALIZA ACESTIORA

5.1. Soluţia tehnică, din punct de vedere tehnoloğic, constructiv, te thic, functionalarhitectural şi economic

5.1.a) Descrierea principalelor lucrări de intervenţie

SOLUTIA 1 - INTRETINEREA STRUCTURII EXISTENTE

(ACESTE LUCRARI DE INTERVENTIE SE POT EXECUTA IN CADRUL INTRETINERII PERIODICE -

 IND. 112 CONFORM AND 554)Pentru astfel de lucrari se pot distinge doua alternative de executie, respectiv executie cu circulatie rutiera pe jumatate de cale (o banda) sau executie in inchidere totala si deviere circulatie rutiera pe rute ocolitoare. In cazul de fata se exclude alternativa de deviere a traficului intrucat nu exista o ruta ocolitoare care sa indeplineasca aceleasi conditii specifice traficului de drum national European iar pentru utilizarea strazilor existente sunt necesare lucrari importante la structura rutiera si la geometria acestora, pe o lungime de aproximativ 11.14 km , iar acestea nu au fost dimensionate la asemenea trafic.

In ceea ce priveste realizarea unui pod temporar, se constata ca amplasamentul podului nu permite acest lucru din cauza constructilor existente.

Avand in vedere cele descrise, in cele ce urmeaza se detaliaza solutia 1, cu devierea circulatiei rutiere pe cate o jumatate de cale (o banda), pentru lucrarile de interventie ce se pot executa in cadrul intretinerii periodice (ind. 112 conform AND 554):
1.1 Lucrari de intretinere la nivelul suprastructurii:
1.Se executa semnalizarea corespunzatoare pentru deviere a circulatiei rutiere si pietonale pe jumatate din latimea caii pe pod;
2.Se demoleaza alternativ pe cate o jumatate, calea pe pod si parapetul pietonal;
3. Se asigura conductele suspendate pe partea laterala a suprastructurii podului;
4.Se demoleaza grinda parapetului si consola de trotuar pe latimea de 80 cm ;
5. Se executa o placa de suprabetonare cu grosimea minima de 15 cm , asigurand doua trotuare pietonale cu latimea utila de 1.50 m si o parte carosabila de $7,80 \mathrm{~m}$ latime. Gurile de scurgere existente se prelungesc si se adapteaza la placa noua;
6. Se executa lucrari de intretinere la nivelul intradosului suprastructurii;
7. Se aplica o protectie anticoroziva a betonului pe intreaga suprafata a suprastructurii.
1.2 Lucrari de intretinere la nivelul caii de pod:
1.Se monteaza un parapet pietonal din otel zincat realizat din profile deschise;
2. Se inlocuiesc dispozitivele de acoperire a rosturilor de dilatatie de pe culei.
3. Se executa stratul suport pentru hidroizolatie.
4. Se executa hidroizolatia tip membrana termosudabila
5. Se executa stratul de protectie a hidroizolatiei;
6. Se executa imbracamintea asfaltica pe pod din MAS $16-4 \mathrm{~cm}$ si BAP16-4cm grosime;
7. Se reconstruiesc trotuarele pietonale la nivel cu calea pe pod. Pe trotuare se va dispune un strat din beton de ciment impermeabilizat cu rasini epoxidice si nisip cuartos, 3 cm grosime.
8. Se monteaza un parapet metalic de tip foarte greu, cu nivel de protecie H 4 b .
9. Se executa marcajul vertical si orizontal pe pod (marcajul longitudinal va avea grosimea de 3000 de microni).
1.3 Lucrari de intretinere la nivelul infrastructurii:

1. Se executa lucrari de intretinere la nivelul zidului de garda si a zidurilor intoarse la ambele culei.
2. Se demoleaza grinda parapetului si consola de trotuar pe lungimea zidurilor intoarse, pe latimea pe care se constata prezenta betonului degradat.
3. Se refac consolele trotuarelor pietonale si grinda de parapet, la o latime care asigura o parte carosabila de $7,80 \mathrm{~m}$ latime si doua trotuare pietonale cu latimea utila de $1,50 \mathrm{~m}$ fiecare.
4. Se executa lucrari de intretinere la nivelul elevatiei ambelor culei
5. Se aplica o protectie anticoroziva a betonului pe intreaga suprafata a infrastructurilor.

1.4 Lucrari de intretinere la nivelul rampelor de acces:

1.Se va realiza o sapatura in spatele culeelor pana la $-0,50 \mathrm{~m}$, pe o lungime de 15 m ;
2. Se executa lucrari de reparatii la nivelul acostamentelor;
3. Se realizeaza racordarea partii carosabile, pe pod, cu calea pe rampele de acces pe lungimea de 15.00 m . Din motive de configuratie a terenului parapetele H 4 b nu se pot prelungi pe terasament si nici nu sunt necesare deoarece la capetele podului inaltimea rambleului este de maxim 2.0 m ;
6. Se executa lucrari de intretinere la nivelul sferturilor de con si a pereului de protectie;
7. Se executa lucrari de intretinere la nivelul casiurilor de descarcare;
8. Se executa lucrari de intretinere la nivelul scarilor de acces;
9. Se executa marcajul vertical si orizontal pe rampele de acces (marcajul longitudinal va avea grosimea de 3000 de microni);

1.5 Lucrari de intretinere la nivelul albiei:

1.Se executa lucrari calibrarea si curatare a albie raului;
2. Se executa lucrari de intretinere la nivelul pereului de protectie a malurilor albiei

SOLUTIA II - INLOCUIREA SUPRASTRUCTURII PODULUI, SCHIMBAREA SCHEMEI STATICE SI

 CRESTEREA CLASEI DE INCARCARE A PODULUI1. Realizarea langa podul existent pe culei temporare, a unui tablier structura mixta otel-beton dimensionat la eurocoduri, care sa-i permita montarea pe culeile existente
2. Realizarea caii la acelasi nivel din MAS $16-4 \mathrm{~cm}$ si BAP16-4cm grosime (marcajul longitudinal va avea grosimea de 3000 de microni)
3. Montare parapet directional H 4 b si pietonal metalic din profile deschise
4. Consolidarea culeelor podului existent pentru solicitarile noi

5. Demolarea suprastructurii si a pilelor podului existent
6. Riparea suprastructurii noi pe culeelor podului existent consolidate
7. Rosturi de dilatare de tip etans si a zonei de racordare rampa-pod
8. Curatarea si calibrarea albiei dupa de,olarea zonelor podului existent

Aceasta solutie nu se poate realiza decat cu devierea circulatiei pe rute ocolitoare. Asa cum s-a descries si la Solutia 1,deoarece nu exista o ruta ocolitoare care sa indeplineasca aceleasi conditii specifice traficului de drum national European, pentru utilizarea strazilor existente sunt necesare lucrari importante de reabilitare a structurii rutiere si a geometriei acestora, pe olungime de aproximativ 11.14 km . Aceste lucrari se impun din cauza faptului ca acestea nu au fost dimensionate la asemenea trafic.

Din punct de vedere al alcatuirii tablierului in mixta otel-beton se evidentiaza doua solutii de realizare:
Solutia 2 - alternativa 1: Tablier metalic inima plina cale sus, in conlucrare cu dala de beton la partea superioara
Elementele geometrice rezultate sunt:

- Deschiderea de calcul a tablierului: 39.00 m
- Inaltimea de constructie: 3.00m
- Inaltimea pe reazem: 2.30 m

In urma analizarii acestei solutii s-a constatat ca pot apare dificultati in aplicare si genereaza urmatoarele consecinte:

- Cresterea inaltimii de constructie cu aproximativ 1.7 m , respectiv de la 1.30 m la 3.00 m ;
- Diferenta de inaltime de contructie nu poate fi preluata prin coborarea intradosului din cauza faptului ca structura existenta se verifica la limita din punct de vedere hidraulic, iar o coborare cu 1.70 m ar conduce la incapacitatea sectiunii de a prelua debitele specifice amplasamentului;
- Din conditilie de amplasamentului, ridicarea nivelului drumului nu este posibila deoarece ar fi afectate accesele la proprietatile invecinate iar solutile de remediere ar ridica semnificativ costurile investitiei.

Fig. Sectiune transversala prin tablier metalic inima plina cale sus

Fig. Sectiune transversala prin tablier metalic inima plina cale sus
Avand in vedere dezavantajele importante prezentate de aceasta solutie, detalierea in cadrul DALI-ulu a fost abandonata.

Solutia 2 - alternativa 2: Tablier metalic inima plina cale jos, in conlucrare cu dala de beton Elementele geometrice rezultate sunt:

- Deschiderea de calcul a tablierului: 39.00 m
- Inaltimea de constructie: 1.30 m
- Inaltimea pe reazem: 1.30 m

Fig. Sectiune transversala prin tablier metalic inima plina cale jos
In urma analizarii acestei solutii s-a constatat ca nu apar dificultati in aplicare datorita faptului ca inaltimea de constructie este aproximativ egala cu cea existenta, respectiv de 1.30m. Avand in vedere acest lucru, aceasta solutie este dezvoltata in prezenta documentatie (parti desenate) si denumita "Solutia 2".

SOLUTIA III - REALIZAREA UNUI POD NOU PRIN DEVIEREA CIRCULATIEI PE O VARIANTA PROVIZORIE DE TRASEU SAU RUTA OCOLITOARE

1. Realizare ruta ocolitoare sau varianta provizorie de traseu
2. Realizare culei noi
3. Realizare suprastructura noua dintr-un tablier mixt otel-beton cu lungimea de cel putin 40.00 m
4. Hidroizolatie performanta
5. Cale noua realizata din MAS $16-4 \mathrm{~cm}$ si BAP16-4cm grosime (marcajul longitudinal va avea grosimea de 3000 de microni)
6. Parapet directional de tip H 4 b la marginea partii carosabile
7. Parapeti pietonali metalici realizati din profile metalice deschise
8. Dispozitive pentru acoperirea rosturilor de dilatatie de tip etans
9. Curatarea si calibrarea albiei raului in zona podului

Ca si in cazul solutiei 2, aceasta solutie nu se poate realiza decat cu devierea circulatiei pe rute ocolitoare, respectiv interventii la drumurile de pe ruta ocolitoare, pentru aducerea la clasa DN.

5.1.b) Descrierea, dupa caz, si a altor categorii de lucrari incluse in solutia tehnica

Pentru realizarea este necesara protejarea/devierea conductelor si cablurilor suspendate pe consolele.

5.1.c) Analiza vulnerabilităţilor cauzate de factorii de risc

Studiul privind riscurilor naturale specifice este important pentru identificarea acestora, dar si pentru măsurile necesare atat preventiei, cat si interventiei pentru protectia populatiei, bunurilor materiale si a colectivitătilor de animale.

Riscurile se pot clasifica după modul de manifestare (lente sau rapidẹ), fie după cauză (naturale sau antropice). Acestea produc pagube mai mici sau mai mari în functie de amplitudinea acestora și de factorii favorizanți în locul sau regiunea în care se manifestă, uneori având un aspect catastrofal.

În cadrul proiectului se studiază realizarea unor lucrari de infrastructura rutiera, astfel riscurile pot fi: fenomene naturale distructive de origine geologică sau meteorologică, în această categorie sunt cuprinse cutremurele, alunecări și prăbușiri de terenuri:

- riscuri climatice - furtuni, inundații, fenomene de îngheț;
- riscuri tehnologice - accidente auto, incendii sau explozii.
5.1.d) Informatii privind posibile interferente cu monumente istorice, situri arheologice, zone protejate

Nu este cazul.

5.1.e) Caracteristici tehnice şi parametri specifici investiţiei rezultate în urma realizării lucrărilor de intervenţie

In cadrul prezentului DALI se recomanda aplicarea solutiei I, ce cupriñole lucrari de interventie ce se pot executa in cadrul intretinerii periodice (ind. 112 conform AND 554) rar in arma aplicafii, acesteia se obtin urmatorii parametri:

- 2 trotuare pietonale pe zona podului, cu latimea utila de 1.50 m fiecare, asiguratespte carosabil de parapeti directionali tip H 4 b ;
- 2 benzi pentru circulatia rutiera, cu latimea totala de $7.8 \not 8 \mathrm{~m}$.

5.2. Necesarul de utilitati rezultate

Lucrările proiectate nu necesită noi utilităţi pentru exploatare.

5.3. Durata de realizare şi etapele principale corelate cu datele prevăzute în graficul

 orientativ de realizare a investiţiei, detaliat pe etape principaleTabel: Grafic lucrari - Solutia 1: executie pe jumatate de cale

It.crt	POD PE DN 59 KMI $43+391$ PESTE RAUL BARZAVA LA DENTA - SOLUTIA 1 - Lucrari de interventie ce ea pot exacutn in cedrul infetinaril psriodice (ind. 112 conform AND EG4)																									
		Durata etapa	Duram de realcare a etaptior do executie.																							
			Proiectare-2 luni					--3 Etape de executie - 8 huní																		
			LUNA 1			Luma 2		LUMM 3			Lama4		LUMAS			LUNM6.			LuNa7		LUNA ${ }^{\text {a }}$			Luma 9		Ltave 10
		zile	10	20	30)	10.	$20 \mid 30$	10	20	30	10	20.30	10	20	30	10	20	30	10	20.30	10	20	39	1020		10.2030
1	Proiectare (DTAC, PTE) si obtnere Autizate Conssruire	60																								
2	Predare amplasament si reakare organizare de sanser	15																								
3	Lucrari de intresnere la nivelul suprastructuri - Aval	30																								
4	Lucrari de intrénere la nivetud cai pe pod - Aval	$30 \sim$																								
5	Lucrari de intesnere la nivelul rampelor de acces-Aval	20														,										
6	Lucran de interinere la nivelt suprastucurii - Amonts EI												-													
7	Luctari de intretnere la nivelis cail pe pod - Amone	30																								
8	Lucrari de intefnere la nivelul rampelor de acces - Amonte	20																								
9	Lucrari de intretnere la niveld infrastructuri	30																								
10	Lucrari de itretnere la nivetu abibi	15																								
11	Reazzare marcaje orizontaze si semnatzare rusera vericaia	5																								1
12	Dezatectarea organizarì de sanfer	10																								
13	Receplya la termnarea hucräņor	2																								[

Tabel: Grafic lucrari - Solutia 2: executie cu inchidere totala si deviere circulatie pe rute ocolitoare (17 luni executie si 8 luni trafic auto deviat pe rute alternative)

Tabel: Grafic lucrari - Solutia 3: executie cu inchidere totala si deviere circulatie pe rute ocolitoare (18 luni executie si 9 luni trafic auto deviat pe rute alternative)

5.4. Costurile estimative ale investiţiei

În conformitate cu evaluarea generală, cheltuielile necesare realizării investiţiei sunt prezentate in Devizele generale anexate la documentatie, ce au fost întocmit cu prevederile HG 907/2016.

Evaluările sunt prezentate în devizele estimative şi în devizul general şi au fost stabilite pe baza cantităţilor determinate din măsurători multiplicate cu costurile unitare din baza de date a proiectantului. Costurile unitare au fost riguros confruntate cu costuri înregistrate la lucrări similare din zonă, actualizate ca preţ la ianuarie 2021.

5.5. Sustenabilitatea realizării investiţiei

5.5.a) Impactul social si cultural

Cantitatea şi calitatea infrastructurii de transport, bazate pe investiţ̧ile în domeniu, precum şi gradul de acces la aceasta reflectă nivelul de civilizaţie, deopotrivă cu disponibilitatea de evoluţie şi creştere economică. În
actualele condiții este necesar ca dezvoltarea şi modernizarea infrastructurii de transport să ia în considerare dinamica redusă a dezvoltării economice în zonele unde acest tip de infrastructură este slab dezvoltată.

Principalele efecte benefice ale implementării proietului:

- îmbunătăţirea, dezvoltarea, modernizarea infrastructurii la nivel local va susţine în mod eficient dezvoltarea comunitǎţii locale;
- va fi rezolvată siguranţa circulaţiei;
- reducerea costurilor de transport de mărfuri şi călători;
- creşterea eficienţei activităţilor economice;
- economisirea de energie şi timp;
- desfăşurarea unui trafic rutier în condiţii normale de siguranţă şi confort;
- inceperea lucrărilor de execuție va permite crearea de noi locuri de muncă;
- accesul facil la diverse institutii din cadrul orașului: primarie, sediu Politie, Oficiul Posta, Scoala si

Gradinita;

- accesul permanent si rapid al masinilor de interventie in caz de urgent: Salvare, Pompieri.

Prin investitille in infrastructura de transport beneficiaza societatea.
Printre beneficii se numara:

- extinderea pietei;
- cresterea concurentei pe piata;
- diseminarea de cunostinte si tehnologie.

5.5.b) Estimări privind forţa de munca ocupată

Avand in vedere caracterul specific al lucrarilor de pod, prin aceste lucrari nu se creeaza noi locuri de munca in mod direct. Lucrarile de pod imbunatatesc sau creeaza accese la obiectivele economice, culturale si administrative din zona, ducand la dezvoltarea generala a zonei prin crearea unei infrastructure adecvate, deci inclusive a noi locuri de munca.

In faza realizarii
Executia lucrarilor se va realiza de catre o societate specializata in lucrari de drumuri si poduri.Se apreciaza ca forta de munva angajata in zona pe timpul executiei va fi structurata astfel:

- 1 ing. Responsabil calitate
- 1 ing. Responsabil cu siguranta circulatiei
- 1 sef de santier
- 1 maistru
- 15 muncitori

In plus, in perioada realizarii lucrarilor beneficiarul va angaja o firma de consultant pentru supravegherea lucrarilor, care va functiona in zona pe toata perioada cu inspector de santier In faza de operare
Odata cu terminarea lucrarilor de modernizare in vederea pastrarii in conditii normale de circulatie a drumului amenajat, este necesara intretinerea acestuia.
In acest sens Benefiarul respectiv Administratorul vor infinta o formatie de lucru pentru intretinerea curenta sau periodica a drumului sau va incheia contract de intretinere a drumului cu firme specializate.

5.5.c) Impactul asupra factorilor de mediu, inclusiv asupra biodiversităţii şi a siturilor

 protejate după cazS-au respectat urmatoarele norme:

- Legea 265/2006 - privind modificarea si aprobarea OUG 195/2005 privind protectia mediului.
- Legea nr. 19/2008 pentru aprobarea Ordonanței de urgență a Guvernului nr. 68/2007 privind răspunderea de mediu cu referire la prevenirea și repararea prejudiciului asupra mediului - publicată in M. Of. nr. 170/ 6 martie 2008.
- Hotărarea Guvernului nr. 856/2002 — privind gestionarea deseurilor.

ISO 9001:2008
Lucrarile proiectate nu introduc efecte negative suplimentare fata de situatia existenta asupra solului, drenajului, microclimatului, a apelor de suprafata, a vegetatiei, faunei sau din punct de vedere al zgomotului sau al peisajului.

Prin executarea lucrarilor proiectate vor apare influente favorabile din punct de vedere economic si social cat si asupra factorilor de mediu:

1. Influente asupra factorilor de mediu datorate realizarii unor conditii de circulatie superioare celor

 actuale:- \quad Scaderea gradului de poluare a aerului;
- Reducerea volumului de praf;
- Scaderea simtitoare a emisiilor de noxe.

2. Influente socio - economice:

- Creare de noi locuri de munca pe perioada executiei lucrarilor;
- Reducerea consumului de carburanti si economii la costul transporturilor;
- Cresterea sigurantei circulatiei si a confortului optic pentru conducatorii auto.

Executantul va obtine autorizatia de mediu de la Agentia de Protectia Mediului pentru organizarea de santier si va lua toate masurile pentru reducerea la minim a impactului negativ asupra mediului.

In timpul lucrarilor de constructie se vor inregistra unele cresteri ale poluarii aerului, mai ales in zona santierutui. Se va acorda o atentie prioritara aspectelor de mediu, se vor analiza datele existente de evaluare a efectetor asupra mediului si se va verifica daca acestea respecta legislatia Romaneasca. Identificarea posibilelor conflicte de mediu generate de solutille tehnice adoptate vor fi transpuse in masuri de protectia mediului care sa nu genereze constrangeri de mediu prin aplicarea lor. De asemenea, se va avea in vedere si respectarea procedurilor nomnelor acceptate pe plan european, Directivele Consiliulul Europei 85/337/EEC din 27 iunie 1985 si 97/11/EC din 3 martie 1997 in domeniul protectiei mediului, care in cea mai mare parte se regasesc si in legislatia romana.

Proiectantul va urmari tratarea corespunzatoare a lucrarilor de protectie a mediului si a sanatatii oamenilor prin proiectarea de solutii corespunzatoare nepoluante, utilizarea materialelor agrementate, respectarea Normelor de mediu in vigoare.

De asemenea se va inregistra o depasire a nivelului de zgomot, depasire specifica unor astfel de lucrari. Protectia la zgomot este stipulata ca cerinta (exigenta) esentiala in Directivele Consiliului Europei nr.89/106/CEE si este definita astfel: "Constructia trebuie proiectata si executata astfel incat zgomotul perceput de utilizatori sau persoanele aflate in apropiere sa fie mentinut la un nivel care sa nu afecteze sanatatea acestora si sa le permita sa doarma, sa se odihneasca sau sa lucreze in conditii satisfacatoare. "Protectia la zgomot" este in acelasi timp cerinta de calitate in constructii in contextulLegii 10/1995. In conformitate cu Normativul privind protectia la zgomot - avizat de Ministerul Transporturilor Constructilor si Turismului, Normativ care stabileste performantele care caracterizeaza parti, elemente si produse de constructie din punct de vedere al protectiei la zgomot, etapele principale pentru verificarea respectarii cerintei de protectie la zgomot in constructii vor fi stipulate in:

- tema - specificatie de proiect;
- in proiect;
- pe parcursul si finalizarea executiei.

Prin proiect vor fi stabilite si respectate toate valorile concrete ale nivelului de zgomot cu respectarea prevederilor din reglementarile tehnice in vigoare. Pentru a putea propune masuri de protectie impotriva zgomotului, se vor analiza sursele de producere a acestuia atat in perioada de executie a lucraritor cat si in perioada de exploatare a lor. Se va indica o evaluare foarte atenta a utilajelor din dotarea Executantului pentru executia lucrarilor astfel incat sa fie folosite numai utilajele si echipamentele care corespund anumitor norme de poluare acustica si cu noxe. Dupa desfiintarea santierului, terenul folosit temporar pentru organizarea de santier, tehnologia de lucru sau in alte scopuri, va fi redat in circulatie si/sau pus la dispozitia organelor locale pentru alte utilltati (statii de alimentare cu carburant, ateliere de reparatii auto etc), respectand legislatia in vigoare.

Solutia propusa va avea o influenta directa, pozitiva, asupra orasului, deoarece implementarea acesteia poate conduce la beneficii generale pentru comunitate. Va determina conditii ameliorate de circulatie rutiera, un nivel de zgomot mai redus si o calitate imbunatatita a aerului.

Lucrările proiectate nu introduc efecte negative suplimentare faţă de situația existentă asupra solului, microclimatului, apelor de suprafaţă, vegetaţiei, faunei, peisajului, sau din punct de vedere artistic, deci nu sunt
afectate obiective de interes cultural sau istoric. Lucrarile din proiectul propus nu vor avea influenta negativa asupra patrimoniului istoric si cultural si arheologic.

5.6. Analiza financiară şi economică aferentă realizării lucrărilor de intervenţie

a) prezentarea cadrului de analiză, inclusiv specificarea perioadei de referinţă şi

 prezentarea scenariului de referinţă;Analiza cost beneficiu este principalul instrument de estimate și evaluare economică a proiectelor. Această analiză are drept scop să stabilească:

- măsura în care proiectul contribuie la politica de dezvoltare a sectorului de transporturi în România și în mod special la atingerea obiectivelor programului în cadrul căreia se solicită finantare
- măsura în care proiectul contribuie la bunăstarea economică a regiunii, eValuata prin calculul indicatorilor de rentabilitate socio-economica ai proiectului.
Principile și metodologiile care au stat la baza prezentei analize cost-beneficiu sunt în conformitate cu urmatoarele:
- Hotărârea nr. 907/2016 privind etapele de elaborare și conținutul-cadru al documentațiilor tehnicoeconomice aferente obiectivelor/proiectelor de investiții finanțate din fonduri publice
- HEATCO - „Developing Harmonised European Approaches for Transport Costing and Project Assessment, DeliVerable 5", 2004;
- „Guide to Cost-Benefit Analysis of Investment Projects", decembrie 2014 - Comisia Europeana
- "Guidelines for Cost Benefit Analysis of Transport Projects" - elaborat de Jaspers.
- Master Plan General de Transport pentru România, Ghidul Național de Evaluare a Proiectelor în Sectorul de Transport și Metodologia de Prioritizare a Proiectelor din cadrul Master Planului, „Volumul 2, Partea C: Ghid privind Elaborarea Analizei Cost- Beneficiu Economice și Financiare și a Analizei de Risc", elaborat de AECOM pentru Ministerul Transporturilor in anul 2014;
Analizele cost-beneficiu financiare si economice vor avea ca date de intrare rezultatele evaluarilor tehnice si ale evaluarilor tehnice privind costurile de investitiei ale proiectului si se vor fundamenta pe reglementarile tehnice in vigoare in Romania.

Analiza cost-beneficiu se va baza pe principiul comparației costurilor alternativelor de construire de drum propuse în situația actuală. Modelul teorectic aplicat este Modelul DCF - Discounted Cash Flow (Cash Flow Actualizat) - care cuantifică diferența dintre beneficiile și costurile generate de proiect pe durata sa de functionare, ajustând această diferență cu un factor de actualizare, operațiune necesară pentru a „aduce" o valoare viitoare la momentul de baza a evaluarii costurilor.

Analiza cost-beneficiu va fi realizata in preturi fixe, pentru anul de baza al analizei 2021, echivalent cu anul de baza al actualizarii costurilor. Prin urmare, toate costurile vor fi exprimate in preturi constante 2021.

b) analiza cererii de bunuri şi servicii care justifică necesitatea şi dimensionarea investiţiei, inclusiv prognoze pe termen mediu şi lung;

Dezvoltarea infrastructurii rutiere în zonele rurale reprezintă un element esențial în cadrul oricărui efort de a valorifica potențialul de creştere și de a promova durabilitatea zonelor rurale. De fapt, crearea de infrastructură rutiera reprezintă primul pas în cadrul procesului de dezvoltare locală, în ideea că aceasta va crește atractivitatea zonei, deci actionează ca un "magnet" pentru potentialiii investitori.

Potentialul de dezvoltare a unei zone este cu atât mai mare cu cât infrastructura de acces este mai dezvoltată. De asemenea, creşterea economică exercită o presiune asupra infrastructurii rutiere de acces existente și determină o nevoie mai accentuată de dezvoltare a acesteia. Astfel, construirea și întreținerea unei infrastructuri rutiere de buna calitate au un efect multiplicator, ce creează numeroase locuri de muncă și impulsionează dezvoltarea economică.

Infrastructura rutiera constituie un element de bază în asigurarea condititilor necesare pentru un trai decent dar și pentru dezvoltarea economică a comunităților.
c) analiza financiară; sustenabilitatea financiară;

MC
Nr. cortificat: :1069
Nr. certificat: 1049

Modelul de analiza financiara a proiectului va analiza cash-flow-ul financiar consolidat si incremental generat de proiect, pe baza estimarilor costurilor investitionale, a costurilor cu intretinerea, generate de implementarea proiectului, evaluate pe intreaga perioada de analiza, precum si a veniturilor financiare generate.

Indicatorii utilizați pentru analiza financiară sunt:

- Valoarea Netă Actualizată Financiară a proiectului;
- Rata Internă de Rentabilitate Financiară a proiectului;
- Raportul Beneficiu - Cost; si
- Fuxul de Numerar Cumulat.

Valoarea Netă Actualizată Financiară (VNAF) reprezintă valoarea care rezultă deducând valoarea actualizată a costurilor previzionate ale unei investiții din Valoarea actualizată a beneficiilor previzionate.

Rata Internă de Rentabilitate Financiară (RIRF) reprezintă rata de actualizare la care un flux de costuri și beneficii exprimate în unități monetare are valoarea actualizată zero. Rata internă de rentabilitate este comparată cu rate de referință pentru a evalua performanța proiectului propus. În Documentul de lucru nr. 4 al Direcției Generale de Politică Regională din cadrul Comisiei Europene se prezintă tabelul cu profitabilitatea așteptată în cazul a diferite tipuri de infrastructuri. Din acest tabel reiese faptul că pentru proiectele de drumuri fără taxă nu se aşteaptă nicio profitabilitate.

Raportul Beneficiu-Cost (R B/C) evidențiază măsura în care beneficiile proiectului acoperă costurile acestuia. În cazul când acest raport are valori subunitare, proiectul nu generează suficiente beneficii și are nevoie de finantare (suplimentara).

Fluxul de numerar cumulat reprezintă totalul monetar al rezultatelor de trezorerie anuale pe întreg orizontul de timp analizat.

Calculele pentru profitabilitatea financiarǎ a investitiei totale sunt prezentate în tabelul urmator.

Calculul Ratei Interne de Rentabilitate Financiare a Investitiei Totale (Lei, cu TVA, preturi constante 2021)

Nr. cortificat: 1069
Nr. certiticant:1049

În mod evident, o investiție pentru utilizarea căreia nu se percep taxe nu este o investiție rentabilă din punct de vedere financiar. Astfel, rezultă valori necorespunzătoare pentru rentabilitatea financiară a investiției (RIRF/C < $4 \%, \mathrm{VNAF} / \mathrm{C}<0$) deoarece cash-flow-ul net este negativ pentru toți anii de operare a investiției, cu excepția ultimului an, când este luată în calcul valoarea reziduală.

Conform metodologiei in vigoare vizand fundamentarea proiectelor de investitii de acest tip, sunt intrunite conditili pentru a sustine necesitatea finantarii publice.

Analiza sustenabilitatii financiare a investitiei evalueaza gradul in care proiectul va fi durabil, din prisma fluxurilor financiare anuale, dar si cumulate, de-a lungul perioadei de analiza. Fluxurile de costuri corespund scenariului incremental „Fara Proiect" - „Cu Proiect".

Fluxul cumulat de numerar este pozitiv in fiecare din anii prognozati, in conditile in care costurile de operare si intretinere periodica pentru situatia proiectata (Cu Proiect) vor fi sustinute de catre Beneficiar prin alocatii bugetare.

Pentru ca un proiect să necesite intervenție financiară din partea fondurilor publice, VANF a investiției trebuie să fie negativă, iar RIRF a investiției mai mică decât rata de actualizare (4\%). Valorile calculate pentru indicatorii financiari ai acestei investiții se conformează acestor reguli, ceea ce înseamnă că proiectul are nevoie de finanțare publica pentru a putea fi implementat.

Evoluția mai puțin favorabilă din punct de vedere financiar este compensată de o evoluție favorabilă din punct de vedere socio-economic, impactul socio-economic fiind cel urmărit în special pentru astfel de proiecte ce au ca utilizator final publicul larg.

De altfel și obținerea unor indicatori ai performanței economice buni (VANE>0; RIRE>5\%) reprezintã o condiție obligatorie pentru ca proiectul să primească finanțare. Verificarea indeplinirii acestei conditii face obiectul capitolului de analiza economica.

Durabilitatea financiara a capitalului investit (Lei, cu TVA, preturi constante 2019)

Anul de analiza	Anul de operare	Intrari	Venituri (alocatii bugetare)	Grant UE	Contributie proprie	IESIRI	Investitie	Total costuri de operare si intretinere	Flux de numerar net	Flux de numerar net cumulat
2021	0	1.985 .144	0		1.985.144	1.985.144	1.985.144	0	0	0
2022	1	0	0			0		0	0	0
2023	2	0	0			0		0	0	0
2024	3	2.184	2184			2.184		2.184	0	0
2025	4	2.184	2184			2.184		2.184	0	0
2026	5	2.184	2184			2.184		2.184	0	0
2027	6	2.184	2184			2.184		2.184	0	0
2028	7	0	0			0		0	0	0
2029	8	65.510	65.510			65.510		65.510	0	0
2030	9	0	0			0		0	0	0
2031	10	0	0			0		0	0	0
2032	11	2.184	2184			2.184		2.184	0	0
2033	12	2.184	2184			2.184		2.184	0	0
2034	13	2.184	2184			2.184		2.184	0	0
2035	14	2.184	2184			2.184		2.184	0	0
2036	15	130.692	130.692			130.692		130.692	0	0
2037	16	0	0			0		0	0	0
2038	17	2.184	2184			2.184		2.184	0	0
2039	18	2.184	2184			2.184		2.184	0	0
2040	19	2.184	2184			2.184		2.184	0	0
2041	20	2.184	2184			2.184		2.184	0	0
2042	21	0	0			0		0	0	0
2043	22	0	0			0		0	0	0
2044	23	65.510	65.510			65.510		65.510	0	0
2045	24	0	0			0		0	0	0

Sustenabilitatea realizării obiectivului de investiţiti:

Sustenabilitatea realizarii obiectivului de investitii:
a) impactul social si cultural, egalitatea de sanse:

- dezvoltarea economică a zonei;
- îmbunătătirea conditillor social - economice si de mediu;
- îmbunătătirea conditiilor de viată a locuitorilor;
- asigurarea infrastructurii rutiere necesare dezvoltării economiei locale;
- crearea de oportunităti de ocupare a fortei de muncă din zonă;
- crearea de noi locuri de muncă; asigurarea mobilitătii fortei de muncă;
- îmbunătătirea calitătii de mediului din zona de implementare a proiectului (reducerea nivelului de zgomot a vehiculelor aflate în circulatie);
- cresterea sperantei de viată datorită facilitătilor mai bune pentru sănătate si a reducerii poluării; - - reducerea nivelului de expunere la poluarea aerului si sonoră a oamenilor din zonă.
b) Estimari privind forta de munca ocupata prin realizarea investitiei:
- In faza de realizare

Având în vedere caracterul specific al lucrărilor de drumuri, prin aceste lucrări nu se creează noi locuri de muncă în mod direct. Forta de muncă necalificată pe parcursul executiei lucrărilor va fi angajată în special din zonă.
-In faza de operare
După finalizarea lucrărilor forta de muncă ocupată va fi în functie de dezvoltarea economică a zonei.
c) impactul asupra factorilor de mediu, inclusiv impactul asupra biodiversitatii si a siturilor protejate, dupa caz: Nu este cazul.
d) impactul obiectivului de investitie raportat la contextul natural si antropic in care acesta se integreaza, dupa caz. Nu este cazul.

d) analiza economică; analiza cost-eficacitate;

Prin analiza economică se urmăreşte estimarea impactului si a contribuției proiectului la cresterea economică la nivel regional si national.

Aceasta este realizată din perspectiva întregii societăți (municipiu, regiune sau țară), nu numai punctul de vedere al proprietarului infrastructurii.

Analiza financiară este considerată drept punct de pornire pentru realizarea analizei socio- economice. În vederea determinării indicatorilor socio-economici trebuie realizate anumite ajustări pentru variabilele utilizate în cadrul analizei financiare.

Principiile și metodologiile care au stat la baza prezentei analize cost-beneficiu sunt în concordanță cu urmatoarele:

- "Guidance on the Methodology for carrying out Cost-Benefit Analysis", elaborat de Comisia Europeană pentru perioadă de programare 2014-2020;
- HEATCO - „Harmonized European Approaches for Transport Costing and Project Assessment" — proiect finanțat de Comisia Europeană în vederea armonizării analizei costbeneficu pentu proiectele din domeniu! îanspodurilor. Proiectu! de cercetare HEATCO a fost realizat în vederea unificării analizei cost-beneficiu pentru proiectele de transport de pe teritoriul Uniunii Europene. Obiectivul principal a fost alinierea metodologiilor folosite în proiectele transnaționale TEN-T, dar recomandările prezentate pot fi folosite și pentru analiza proiectelor naționale;
- "General Guidelines for Cost Benefit Analysis of Projects to be supported by the Structural Instruments" ACIS, 2009;
- "Guidelines 1or Cost Benefit Analysis of Transport Projects" - elaborat de Jaspers.
- Master Plan General de Transport pentru România, Ghidul Național de Evaluare a Proiectelor în Sectorul de Transport și Metodologia de Prioritizare a Proiectelor din cadrul Master Planului, „Volumul 2, Partea C: Ghid privind Elaborarea Analizei Cost- Beneficiu Economice și Financiare și a Analizei de Risc", elaborat de AECOM pentru Ministerul Transporturilor in anul 2014.
Principalele recomandări privind analiza armonizată a proiectelor de transport se referă la următoarele elemente:
- Elemente generale: tehnici de evaluare, transferul beneficiilor, tratarea impactului necuantificabil, actualizare și transfer de capital, criterii de decizie, perioada de analiză a proiectelor, evaluarea riscului viitor și a senzitivității, costul marginal al fondurilor publice, surplusul de valoare a transportatorilor, tratarea efectelor socio-economice indirecte;
- Valoarea timpului și congestia de trafic (inclusiv traficul pasagerilor muncă, traficul pasagerilor non-muncă, economiile de trafic al bunurilor, tratarea congestillor de trafic, întârzierile nejustificate);
- Valoarea schimbărilor în riscurile de accident;
- Costuri de mediu;
- Costurile și impactul indirect al investiției de capital (inclusiv costurile de capital pentru implementarea

proiectului, costurile de întreținere, operare și administrare, valoarea reziduală).
Rata de actualizare pentru actualizarea costurilor si beneficiilor in timp este de 5%, in conformitate cu normele Europene asa cum sunt descrise in 'Guide to cost-benefit analysis of investment projects' editat de "Evaluation Unit - DG Regional Policy", Comisia Europeana. Rata de actualizare de 5\% este valabila pentru „tarile de coeziune", Romania incadrandu-se in aceasta categorie.

Ipoteze de baza

Scopul principal al analizei economice este de a evalua dacă beneficiile proiectului depășesc costurile acestuia și dacă merită să fie promovat. Analiza este elaborată din perspectiva întregii societăți nu numai din punctul de vedere al beneficiarilor proiectului iar pentru a putea cuprinde intreaga varietate de efecte economice, analiza include elemente cu valoare monetară directă, precum costurile de construcții si întreținere și economiile din costurile de operare ale vehiculelor precum și elemente fără valoare de piață directă precum economia de timp, reducerea numărului de accidente și impactul de mediu.

Toate efectele ar trebui cuantificate financiar (adică primesc o valoare monetară) pentru a permite realizarea unei comparări consistente a costurilor și beneficiilor în cadrul proiectului și apoi sunt adunate pentru a determina beneficiile nete ale acestuia. Astfel, se poate determina dacă proiectu leste dezirabil și merită să fie implementat. Cu toate acestea, este important de acceptat faptul că nu toate efectele proiectului pot fi cuantificate financiar, cu alte cuvinte nu tuturor efectele socio-economice li se pot atribui o valoare monetara.

Anul 2021 este luat ca baza fiind anul intocmirii analizei cost-beneficiu. Prin urmare, toate costurile si beneficiile sunt actualizate prin prisma preturilor reale din anul 2021.

Lucrarile de constructie vor fi realizate in 2021. Astfel, situatia imbunatatita infrastructurii rutiera va exista incepand cu anul 2022. Perioada de calcul folosita este de 25 de ani. Aceste ipoteze au fost de asemenea adoptate in conformitate cu normele europene asa cum sunt descrise in 'Guide to cost-benefit analysis of investment projects' - "Evaluation Unit - DG Regional Policy", Comisia Europeana.

Valoarea reziduala la sfarsitul perioadei de analiza a fost estimata la 20% din costul total de investitie, pentru orice element de infrastructura care va fi realizat ca parte a lucrarilor.

Ca indicator de performanta a lucrarilor de modernizare, s-au folosit Valoarea Actualizata Neta (beneficiile actualizate minus costurile actualizate) si Gradul de Rentabilitate (rata beneficiu/cost). Acesta din urma exprima benefiiciile actualizate raportate la unitatea monetara de capital investit. In final, rezultatele sunt exprimate sub forma Ratei Interne de Rentabilitate: rata de scont pentru care Valoarea Neta Actualizata ar fi zero.

Rata Interna de Rentabilitate Economica

Calculul Ratei Interne de Rentabilitate a Proiectului (EIRR) se bazează pe ipotezele:

- Toate beneficiile și costurile incrementale sunt exprimate în prețuri reale 2021, în Lei;
- EIRR este calculată pentru o durată de 25 ani a Proiectului. Aceasta include perioada de constructie (anul 1), precum și perioada de exploatare, până în anul 25 (anul efectiv 2045);
- Viabilitatea economică a Proiectului se evaluează prin compararea EIRR cu Costul Economic real de Oportunitate al Capitalului (EOCC). Valoarea EOCC utilizată în analiză este 5\%. Prin urmare, Proiectul este considerat fezabil economic, dacă EIRR este mai mare sau egală cu 5%, conditie ce corespunde cu obtinerea unui raport beneficii/costuri supraunitar.

Eșalonarea Investitiei

Eșalonarea investiției s-a presupus a se derula pe o perioadă de un an, pentru anul de analiza 0 , conform Calendarului Proiectului.

Beneficiile economice

Au fost considerate pentru analiza socio-economica, doar o parte din componentele monetare care au influenta directa. Pentru determinarea acestor beneficii s-a aplicat acelasi concept de analiza incrementala, respectiv se estimeaza beneficiile in cazul diferentei intre cazul "cu proiect" si "fara proiect".

Efectele sociale (pozitive) ale implementarii proiectului sunt multiple si se pot clasifica in doua categorii:

- Efecte cuantificabile monetare (care pot fi monetarizate); si
- Efecte necuantificabile (efectul multiplicator).

Principalii beneficiari directi ai proiectului sunt utilizatorii de drum, aceia care beneficiaza in mod direct de imbunatatirea conditiei tehnice a infrastructurii rutiere, ceea ce determina conditii superioare de circulatie. Aceste conditii de circulatie imbunatatite constau in cresterea gradului de comfort si siguranta a circulatiei.

In continuare sunt enumerate succint beneficiile socio-economice directe si indirecte identificate pentru acest tip de proiect, incat sa se defineasca cat mai complet impactul socio- economic proiectului:

- Imbunatatirea starii tehnice a infrastructurii rutiere:
$>$ Reducerea uzurii autovehiculeîor si reducerea timpilor de parcurs pentru persoane - direct
$>$ Reducerea costurilor determinate de accidentele rutiere - indirect
$>$ Reducerea costurilor legate de mediul inconjurator - direct
$>$ Reducerea timpilor de imobilizare a marfurilor - direct
- Cresterea nivelului de trai al populatiei rezidente in localitatile invecinate locatiei de proiect:
$>$ Asigurarea accesului la servicile publice - salvare, pompieri, politie, etc in perioada anotimpului rece indirect
$>$ Crearea locurilor de munca temporare pe perioada de implementare a proiectului - direct
$>$ Cresterea veniturilor bugetului local din impozitul pe venit - indirect
$>$ Cresterea volumului investitiilor atrase - indirect
- Alte beneficii socio-economice non-monetare:
>Proiectul va contribui la reducerea somajului local si la imbunatatirea calificarii personalului angajat in sistem
$>$ Cresterea valorii terenului si a imobilelor prin cresterea atractivitatii localitatilor invecinate locatiei proiectului.
Tabelul urmator prezinta ipotezele de baza ale analizei economice, costurile si beneficiile cuantificate precum si indicatorii de rezultat, de apreciere a eficientei economice a proiectului.
Ipotezele de baza, masurile cuantificate si indicatorii de rezultat ai analizei economice

Categorie	Indicator	Descriere
Ipoteze de baza		
Rata de actualizare economica	EOCC	5\%
Anul de actualizare a costurilor	2021	
Anul de baza al costurior	2021	
Perioada de analiza, din care	25 ani	
Investitie	1 an	2021-2022
Operare	24 ani	2022-2048
Costuri economice	CapEx	Costul de constructie
	OpEx	Costuri de intretinere si operare
Beneficii economice cuantificate	VOC	Reducerea costului de operare vehiculelor
	VOT	Reducerea costului cu valoarea timpului
		Reducerea numarului de accidente
		Reducerea impactului negativ asupra mediului
Indicatori de rezultat	EIRR	Rata Interna de Rentabilitate Economica
	ENPV	Valoarea Neta Prezenta Economica
	BCR	Raportul Beneficii/Costuri

In rezumat, etapele de realizare a analizei economice sunt:

1. Aplicarea corectilor fiscale;
2. Monetizarea impacturilor (calculul beneficiilor);
3. Transformarea preturilor de piata in preturi contabile (preturi umbra); si
4. Calculul indicatorilor cheie de performanță economică

Cuantificarea beneficiilor economice

Conform tabelului anterior se vor cuantifica urmatoarele categorii de beneficii economice:

- Beneficii din reducerea costurilor de exploatare ale vehiculelor;
- Beneficii din reducerea timpului de parcurs al pasagerilor;
- Beneficii din reducerea numarului de accidente; si

Aceste beneficii economice se calculeaza, de obicei, avand la baza rate (costuri) unitare exprimate de unitatea de masura vehicul-km sau vehicul-ora. Avand in vedere acestea, prognozele fluxurilor de trafic in Scenariile Fara si Cu Proiect sunt de o importanta particulara.

e) Analiza de riscuri, măsuri de prevenire/diminuare a riscurilor.

Rezultatele proiectului pot fi influentate de diferiti factori de risc de la analiza carora nu putem face abstractie. La fel ca in cazul oricarui tip de investitie, proiectul de fata implica anumite riscuri. In acest sens putem deosebi:

- riscuri generale - se refera la acele riscuri care decurg din evolujia de ansamblu a mediului (natural, economic, social, cultural, tehnologic, politic etc.), la nivel mondial sau national
- riscuri specifice - care tin de echipa de proiect, de tipul investitiei, de modul cum sunt planificate activitatile in cadrul obiectivului de investitie
Analiza de risc cuprinde urmatoarele etape principale:
- Identificarea riscurilor se va realiza in cadrul sedintelor lunare de progres de catre membrii echipei de proiect. Identificarea riscurilor trebuie sa includa riscuri care pot aparea pe parcursu! intregului proiect: financiare, tehnice, organizatorice, cu privire la resursele umane implicate, precum si riscuri externe (politice, de mediu, legislative). Identificarea riscurilor trebuie actualizata la fiecare sedinta lunara.
- Estimarea si evaluarea probabilitatii de aparitie a riscului. Riscurile identificate vor fi caracterizate in functie de probabilitatea lor de aparitie si impactul acestora asupra proiectului.
- Gestionarea riscului si imbunatatirea conceptului proiectului, pe baza Graficului de Management al Riscului.
Identificarea riscurilor se realizeaza prin:
- analiza planului de implementare
- brainstorming
- experienta specialistilor si a echipei de implementare
- metode analitice - unde este posibil

Riscurile identificate in cadrul acestui proiect, prin metodele de identificare a riscului mai sus mentionate sunt:

- riscuri comerciale si strategice
- riscuri economice
- riscuri contractuale
- riscuri de mediu
- riscuri politice
- riscuri sociale
- riscuri naturale
- riscuri institutiona/e si organizationale
- riscuri operationale si de sistem
- riscuri determinate de factorul uman
- riscuri tehnice

Alaturi de variabilele critice identificate prin analiza de senzitivitate si care nu necesita aplicarea unor masuri speciale pentru prevenirea unor posibile riscuri, se prezinta mai jos si o analiza calitativa a anumitor riscuri si masurile luate.

RISC	PROBABILITATE DE APARITIE	MASURI
Riscuri contractuale		
- intarzieri in organizarea procedurilor de achizitii	mediu	Pentru a evita intarzierile in organizarea procedurilor de achiziti, graficul de realizare a acestora va fi atent monitorizat, vor fi identificati din timp posibilii furnizori si se va incerca o comunicare cat mai transparenta

		cu acestia.
- potentiale modificari ale solutiei tehnice	scazut	prevederea in contractul de proiectare a garantiei de buna executie a proiectului tehnic, garantie care va fi retinuta in cazul unei solutii tehnice necorespunzatoare asistenta tehnica din partea proiectantului pe perioada executiei proiectului acoperirea cheltuielilor cu noua solutie tehnica cu sumele cuprinse la cheltuielile diverse si neprevazute
- neincadrarea efectuarii lucrarilor de catre constructor in graficul de timp aprobat si in cuantumul financiar stipulat in contractul de lucrari	scazut	prevederea in caietul de sarcini a unor cerinte care sa asigure performanta tehnica si financiara a firmei contractante (personal suficient, experienta similara) pentru ca acest risc sa poata fi prevenit este necesar ca din etapa de elaborare a documentatiei de finantare graficul Gantt al proiectului si bugetul estimat de costuri sa fie elaborate realist si pe baza unor input-uri certe. In acest sens, introducerea rezervelor financiare si de timp este o masura preventiva.
-nerespectarea clauzelor contractuale a unor contractanti si subcontractanti	scazut	stipularea de garantii suplimentare si penalitati in contractele incheiate cu firmele contractante
Riscuri organizatorice		
- neasumarea unor sarcini si responsabilitati in cadrul echipei de proiect	scazut	stabilirea responsabilitatilor membrilor echipei de proiect prin realizarea unor fise de post clare si complete numirea in echipa de proiect a unor persoane cu experienta in implementarea unor proiecte similare motivarea personalului cuprins in echipa de proiect
Riscuri institutionale		
- intarzieri in obtinerea avizelor si autorizatiilor necesare pentru implementarea proiectului	mediu	solicitarea in timp util a acestora
- contestatii in procedurile de achizitie publica	scazut	prevederea in caietul de sarcini a unor criterii de evaluare obiective;
- capacitatea insuficienta de finance	scazut	Consiliul Local va contracta un credit bancar pentru finantarea proiectului

- cresterea accelerata a preturilor	realizarea bugetului la preturile existente pe piata. cheltuielile generate de cresterea preturilor vor fi suportate de catre beneficiar din bugetul local	
Riscuri de mediu	mediu	
- conditille de clima nefavorabile efectuarii unor categorii de lucrari.	mediu	planificare judicioasa a lucrarilor cu luarea in considerare a unei marje de timp in plus alegerea unor solutii de execute care sa tina cont cu prioritate de conditille cîimatice

Riscuri de management

RISC	PROBABILITATE DE APARITIE	MASURI
- Posibilitatea ca managementul proiectului sa nu poata fi asigurat in mod eficient, ceea e va conduce la intarzieri in derularea proiectului si la nerespectarea termenului de executie prevazut.	mediu	numirea in echipa care va monitoriza implementarea proiectului a unor
persoane cu experienta relevanta in		
derularea proiectelor.		

Printr-o pregatire corespunzatoare si la timp a unor masuri se pot diminua considerabil efectele negative produse de diferiti factori de risc.
Proiectul nu cunoaste riscuri majore care ar putea intrerupe realizarea obiectivului de investitie prezent. Planificarea corecta a proiectului inca din faza de elaborare a acestuia, precum si monitorizarea continua pe parcursul implementarii asigura evitarea riscurilor care pot influenta major proiectul.
Dupa identificarea riscurilor pe baza surselor de risc punem problema evaluarii impactului pe care l-ar avea riscul respectiv asuprta proiectului in cauza si a estimarii probabilitatii producerii riscului.
Abordarea riscurilor se bazeaza astfel pe:

- dimensîunea riscului
- masurarea riscului

Ca si concluzie generala a evaluarii riscurilor se poate spune ca:

- riscurile care pot aparea in derularea proiectului au in general un impact mare /a
- producere , dar o probabilitate redusa de aparitie si declansare
- riscurile majore care pot afecta proiectul sunt riscurile financiare si economice
- probabilitatea de aparitie a riscurilor tehnice a fost semnificativ redusa prin contractarea lucrarilor de consultanta cu firme de specialitate.
In functie de structura riscurilor se vor lua masurile necesare unei gestionari eficiente si corecte a riscurilor. Aceasta se realizeaza pe baza a patru operatiuni distincte:
- planificarea
- monitorizarea
- alocarea resurselor necesare prevenirii si inlaturarii efectelor riscurilor produse
- control

Pentru o mai buna evidentiere si urmarire a risculuila care proiectil este supus, precum si pentru o coresta selectare a actiunilor de gestionare a riscurilor, se va folosi Graficul de Management al Riscului:

Evaluare risc	Management de risc (Masuri de prevenire)	Probabilitate impact-rating

Inflatia este mai mare decat cea pronosticata	Aprovizionarea ritmica, contracte ferme cu furnizorii	M
Modificari legislative altele decat cele preconizate	Implicare operator in dezbateri de legi si norme legislatiVe	M
Se intarzie armonizarea legislatiei Romaniei cu legislatia UE	Sprijinirea implementarii legislatiei la nivel local si regional	L
Evaluare risc	Management de risc (Masuri de prevenire)	Probabilitate impact-rating
Conditillede mediu	Reprogramarea activitatillor, corelarea lor cu prognozele INMH	M
Planul de finanrtare va fi modificat	Cautarea unor surse alternative	L
Lipseste personalul specializat Organizarea de programe si cursuri de instruire	H	
Lipsa continuarii a dezvoltarii strategiei lucrarilor	Refacerea strategiei in concordanta cu dezvoltarea socio ec. locala	L
Managementul neperformant	Program de instruire adecvata pentru top management	M

Legenda: H - ridicat; M - mediu; L - scazut.

6. SCENARIUL / OPTIUNEA TEHN/C⿹\zh26-ECONONIGĂ OP FIMM(Ă) , RECOMANDAT(Ă)

6.1. Comparatia scenariilor din punct de vedere tehnic, economic, financiar

În analiza optiunilor s-a pornit de la faptul cąproiectuts, intrând in catesoria bunurilor publice, are două caracteristici principale: este nonexclusiv (este imposibilsau'extfrể Be anevoios să fie împiedicată utilizarea lui de către anumiți consumatori) şi nonrival (prin faptul ca nu se vor percepe taxe la acelaşi nivel al ofertei).

Cu alte cuvinte beneficiile sunt aceleaşi pentru utilizatori, nefiind percepută o taxă pentru utilizarea podului, nefiind nevoie de analiza cererii.

Varianta zero - Scenariul fără investiţie

Situaţia precară a podului creează o serie de efecte negative. Alternativa fără proiect nu corespunde cerinţelor economice şi sociale, întrucât, la acest moment zona supusă prezentului proiect nu corespunde din punct de vedere rutier standardelor şi normelor în vigoare deoarece prezintă valori de trafic ridicate, cu perspective de creştere a acestor valori în viitorul apropriat, ca urmare a numărului mare al persoanelor care tranzitează zona.

Varianta medie - Scenariul cu investiţie medie

Se vor continua lucrările de intreţinere, în limita fondurilor disponibile. Adoptând această soluţie rezultatele vor fi, de regulă, de calitate redusă deoarece nu se dispune de fonduri alocate în mod suficient. Mai mult ca sigur că aceste fonduri vor fi folosite ineficient. La scurt timp după finalizarea acestui tip de lucrǎri apar degradări multiple. O reparare repetată prin aceste procedee de întreţinere nu are viabilitate tehnică şi economică. De aceea recomandăm alegerea unei soluţii constructive eficiente, care să fie capabilă a rezista timpului, climei şi traficului.
Varianta maximă - Scenariul cu investiţie maximă

Deşi la prima vedere, această variantă pare mai costisitor atât din punct de vedere financiar cât şi ca durată, pe termen mediu și lung vor apărea avantajele economice, sociale şi de mediu, care vor contribui la atingerea obiectivelor stabilite.
În analiza alternativelor optime se vor detalia trei solutii:

Solutia 1	Solutia 2	Solutia 3		
Lucrari de interventie ce se pot executa in cadrul intretinerii periodice (ind.112 conform AND 554) - alternativ, pe cate o jumatate de cale	Cuprinde lucrari de inlocuire a suprastructurii podului cu cu schimbarea schemei statice, consolidarea culeelor si cresterea clasei deincarcare a podului	Cuprinde realizarea unui pod nou prindevierea circulatiei pe oruta ocolitoare		
Avantajele aplicarii Solutiei 1- alternativa 1: - resurse financiare mai mici in comparatie cu Solutia 2 si 3;	Avantajele aplicarii Solutiei 2: - Asigura o durata de exploatare normala mare;	Avantajele aplicarii Soluției 3: - Asigura o durata de exploatare normala mare;		
- Prezinta o durata de executie de			\quad	8 luni, mai redusa in comparatie
:---				
cu Solutia 2 si 3				

Analiza comparativa intre cele doua scenarii:

Nr . crt.	Criterii de analiza si selectie alternativa	Solutia 1 alternativa 1	Solutia 2	Solutia 3
1	Durata de exploatare mare/mica (5/1)	3	4	5
2	Raport pret investitie initiala / trafic satisfacut bun, ${ }^{\text {a }}$ slab (51,1$)$	c) 4	3	2
3	Raport utilizare / aliniament sau curba da/nu($5 / 1$) \rightarrow^{7}	35	5	5
4	Raport utilizare / temperatura mediulambient bunfslab (5/1)	$\geqslant 4$	4	4
5	Raport rezistenta la uzura / trafic mare fmic	C 4	4	4
6	Poluarea in executie nu/da (5/1)	* 2	2	2
7		5	5	5
8	Avantaj/dezavantaj aspect arhitectural (5/1) M P PRCit	4	3	3
9	Necesita utilaje specializate de executie cu intretinere atenta da/nu	5	4	4
10	Necesita adaptarea traficului la executie nu/da (5/1)	4	3	3
11	Durata mica / mare de executie (5/1)	5	3	2
12	Necesita executia si intretinerea atenta a rosturilor dintre prebabricate nu/da (5/1)	5	5	5
13	Poate prelua cresteri de trafic usor/greu (5/1)	4	5	5
14	Executia poate fi etapizata da/nu (5/1)	5	5	5
15	Riscuri de executie (5/1)	3	4	4
16	Corectiile in executie se fac usor/greu (5/1)	5	5	5
17	Cheltuieli de intretinere pe perioada de analiza (25 ani) mici / mari (5/1)	4	5	5
TOTAL		71	69	68

Punctaj realizat:

- Solutia 1 - alternativa $1=71$ puncte;
- Solutia $2=69$ puncte;
- Solutia $2=68$ puncte;

Fată de punctajul maxim - minim, care este 85 și respectiv 17 , solutia $1=$ solutia optimă, se califică realizând 71 puncte. Datorita diferenţei de cost estimativ, dar si din punct de vedere termenelor de executie a lucrarilor, Solutia 1 iese in avantaj.

Varianta recomandată: Solutia 1

Este de așteptat ca Solutia 1 sa aibă urmatoarele rezultate:

- va fi rezolvată siguranţa circulației;
- creşterea eficienţei activităţilor economice;
- economisirea de energie şi timp;
- destăşurarea unui trafic rutier și pietonal în condiţii normale de siguranţă şi confort;

6.2. Selectarea si justificarea scenariului recomandat

Pentru aducerea la starea tehnica foarte buna, se recomanda aplicarea solutiei I, ce cuprinde lucrari de interventie ce se pot executa in cadrul intretinerii periodice (ind. 112 conform AND 554).

In functie de strategia pe termen mediu si lung, de resursele financiare disponibile in cadrul administrarii optimizate a poduriior, Compania Nationaia a infrastructurii Rutiere poate apica oricare dinsoiutiiie prezentate.

6.3. Principalii indicatori tehnico-economici ai investiţiei

6.3.a) indicatori maximali

DENUMIRE	VALOARE FARA TVA	TVA	VALOARE CU TVA
	LEI	LEI	LEI
TOTAL GENERAL			
Din care C+M			

6.3.b) Indicatori minimali, respectiv indicatori de performanţă - elemente fizice/capacităţi fizice care să indice atingerea ţ̧intei obiectivului de investiţii - şi, după caz, calitativi, în conformitate cu standardele, normativele şi reglementările tehnice în vigoare;
In cadrul prezentului DALI se recomanda aplicarea solutiei I, ce cuprinde lucrari de interventie ce se pot executa in cadrul intretinerii periodice (ind. 112 conform AND 554), iar in urma aplicarii acesteia se obtin urmatorii parametri:

- 2 trotuare pietonale pe zona podului, cu latimea utila de 1.50 m fiecare, asigurate spre carosabil de parapeti directionali tip H 4 b ;
- 2 benzi pentru circulatia rutiera, cu latimea totala de 7.80 m .
6.3.c) Indicatori financiari, socio economici, de impact, de rezultat/operare, stabiliţi în funcţie de specificul şi ţinta fiecărui obiectiv de investiţii;
Indicatori financiari
Sunt prezentati la cap. 5.6
Indicatori socio economici
Principalele efecte benefice ale implementării proietului:
- îmbunătăţirea, dezvoltarea, modernizarea infrastructurii va susţine în mod eficient dezvoltarea comunităţii;
- va fi rezolvată siguranţa circulaţiei;
- reducerea costurilor de transport de mărfuri şi călători;
certifcat: 1049
Nr. certincat: 1049
HSAS 18001:200
- creşterea eficienţei activităţilor economice;
- economisirea de energie şi timp;
- desfăşurarea unui trafic rutier și pietonal în condiții normale de siguranţă şi confort;
- inceperea lucrǎrilor de execuţie va permite crearea de noi locuri de muncă;
- accesul facil la diverse institutii din cadrul orasului : primarie, sediu Politie, Oficiul Posta, Scoala si Gradinita;
- accesul permanent si rapid al masinilor de interventie in caz de urgent: Salvare, Pompieri.

Indicatori de rezultat/operare
In urma aplicarii solutiei 1, recomandate, se obtine o durata de exploatare de circá 15 ani.

6.3.d) Durata de realizare a investiţiei

Durata de realizare a investitiei, in functie de solutia aleasa este:

- Solutia 1: 10 luni (2 luni Proiectare +8 luni Executie)
- Solutia 2: 20 luni (3 luni Proiectare + 17 luni Executie)
- Solutia 3: 21 luni (3 luni Proiectare + 18 luni Executie)

6.4. Prezentarea modului în care se asigură conformarea cu reglementările specifice funcţiunii preconizate din punctul de vedere al asigurării tututor cerinţelor fundamentale aplicabile construcţiei

Caracteristicile tehnice minime pentru reteaua de cai rutiere trebuie sa asigure utilizatorilor un nivel ridicat, uniform si continuu al serviciilor, confortului si sigurantei rutiere. La intocmirea studiului s-a acordat prioritate aspectelor privind imbunatatirea calitatii infrastructurii din punct de vedere al sigurantei, securitatii si eficientei, al rezistentei in fata dezastrelor, al performantelor de mediu, al accesibilitatii pentru toti utilizatorii, al calitatii serviciilor si al continuitatii fluxurilor de trafic. Studiul a fost intocmint conform HG 907/ 29.11.2016 - Hotarare privind etapele de elaborare si continutul cadru al documentatilior tehnico - economice aferente obiectivelor/proiectelor de investitii din fonduri publice.

Conform prevederilor legii 10/1995, actualizata si a Decretului 931/1990, se va asigura un nivel calitativ corespunzator criteriilor de performanta principale, dupa cum urmeaza:

- A4 rezistenta si stabilitate;
- B2 siguranta in exploatare;
- D igiena, sanatatea oamenilor, refacerea si protectia mediului.

În scopul realizarii studiului s -a ţinut seama de :
> AND 522/2002 - Instructiuni pentru stabilirea starii tehnice a unui pod;
\Rightarrow AND 534/1998 - Manual pentru identificarea defectelor aparante la podurile rutiere si indicarea metodelor de remediere;
$>$ AND 605/2013- Normativ mixturi asfaltice executate la cald;
$>$ AND 554-2002 - Normativul privind întreţinerea şi repararea drumurilor publice;
$>$ AND 514/2007 - Regulament privind efectuarea recepţillor şi serviciilor de întref̧inere şi reparaţii curente la drumurile publice;
$>$ NP 103-2001 - Normativ de proiectare reparatii si consolidare ale podurilor rutiere in exploatare;
$>$ PD 95-2002 - Normativ privind proiectarea hidraulica a podurilor si podetelor;
$>$ C 16-84 - Normativ pentru realizarea pe timp friguros a lucrărilor de construcții şi instalaţii aferente;
$>$ STAS 4273-83 - Construcții hidrotehnice.Incadrarea in clase de importanta;
$>$ Legea nr. 137/1995 actualizata - Privind protectia mediului inconjurator;
> Legea nr. 319/2006 - Privind securitatea și sanatatea în munca;
$>$ SR EN 206+A1:2017- Beton.Specificatie, performanta, productie si conformitate;

Ir. Cortinical:
ISO 14001:2004
SR EN 12620+A1:2008 - Agregate pentru beton;
$>$ SR EN 13043:2003 - Agregate pentru amestecuri bituminoase şi pentru finisarea suprafeţelor, utilizate la constructia şoselelor, a aeroporturilor şi a altor zone cu trafic;
$>$ SR EN 13242+A1:2008 - Agregate din materiale nelegate sau legate hidraulic pentru utilizare în inginerie civilă şi în construcţii de drumuri;
$>$ SR EN 12620+A1:2008-Agregate pentru beton;
$>$ STAS 10473/2-86 - Lucrări de drumuri. Straturi rutiere din agregate naturale sau pământuri stabilizate cu lianţi hidraulici sau puzzolanici. Metode de determinare şi încărcare;
> STAS 6400-84 - Lucrǎri de drumuri - Straturi de bază şi de fundaţie.Conditii tehnice generale de calitate;
$>$ SR EN $13242+$ A1:2008 Agregate din materiale nelegate sau legate hidraulic pentru utilizare în inginerie civilă şi în construcții de drumuri;
$>$ SR EN 13108-1:2016 - Mixturi asfaltice. Specificaţii pentru materiale. Partea 1: Betoane asfaltice;
$>$ SR EN 13108-2:2016- Mixturi asfaltice. Specificații pentru materiale. Partea 2: Betoane asfaltice pentru straturi foarte subţiri;
$>$ SR EN 13108-20:2016 - Mixturi asfaltice. Specificaţii pentru materiale. Partea 20: Procedură pentru încercarea de tip;
$>$ SR EN 13108-21:2016 - Mixturi asfaltice. Specificaţii pentru materiale. Partea 21: Controlul producţiei în fabrică;
$>$ SR EN 13108-3:2016 - Mixturi asfaltice. Specificaţii pentru materiale. Partea 3: Asfalt suplu;
$>$ SR EN 13108-4:2016 - Mixturi asfaltice. Specificaţii pentru materiale. Partea 4: Mixturi asfaltice tip Hot Rolled Asphalt;
$>$ SR EN 13108-5:2016 - Mixturi asfaltice. Specificaţii pentru materiale. Partea 5: Asfalt cu conţinut ridicat de mastic;
$>$ SR EN 13108-6:2016 - Mixturi asfaltice. Specificaţii pentru materiale. Partea 6: Asfalt turnat rutier;
$>$ SR EN 13108-7:2016 - Mixturi asfaltice. Specificaţii pentru materiale. Partea 7: Asfalt drenant;
$>$ SR EN 13108-8:2016 - Mixturi asfaltice. Specificaţii de material. Partea 8: Asfalt recuperat;
$>$ STAS 10796/1-77 - Construcții anexe pentru colectarea şi evacuarea apelor- Prescripţii de proiectare;
$>$ SR EN 12350-4:2019- Încercare pe beton proaspăt.Partea 4: Grad de compactare;
$>$ STAS 1709/1-90 - Acţiunea fenomenului de îngheţ - dezgheţ la lucrări de drumuri. Adâncimea de îngheţ în complexul rutier. Prescripţii de calcul ;
\Rightarrow STAS 1709/2-90.- Acţiunea fenomenului de îngheţ - dezgheţ la lucrări de drumuri Prevenirea şi remedierea degradărilor din îngheţ-dezgheţ. Prescriptii tehnice;
$>$ STAS 1709/3-90 - Acțiunea fenomenului de îngheț - dezgheţ la lucrări de drumuri. Determinarea sensibilităţii la îngheţ a pământurilor de fundaţie. Metode de determinare;
$>$ STAS 9470-73 - Constructii hidrotehnice. Ploi maxime. Intensitati, durate, frecvente;
$>$ STAS 1848/7-2015 - Semnalizare rutiera; Marcaje rutiere;
> Legea nr. 10/1995 actualizata - Legea calităţii în constructivi;

6.5. Nominalizarea surselor de finantare a investitiei

Responsabila cu implementarea proiectului este CNAIR prin DRDP Timisoara. Sursele de finantare ale investitiei se constituie in conformitate cu legile in vigoare si consta in fonduri externe nerambursabile, fonduri proprii, credite bancare, fonduri de la bugetul de stat/bugetul local, credite externe garantate sau contractate de stat, fonduri externe nerambursabile si alte surse legal constituite.

7. URBANISM, ACORDURI SI AVIZE CONFORME

7.1. Certificat de urbanism

S-a anexat documentatia necesara pentru obtinerea Certificatul de urbanism.

MC

Studiu topografic a fost pus la dispozitie da catre Beneficiar in cadrul procedurii de licitatie in faza DALI.

7.4. Avize privind asigurarea utilităţilor, în cazul suplimentării capacităţii existente

Nu este cazul deoarece dotarile organizarii de santier vor fi mobile si nu este nevoie sa se branseze la utilitatile publice. Astfel consumurile proprii organizarii de șantier și cele pentru realizare lucrǎrilor definitive vor fi asigurate cu generatoare de curent, cisterne de apa si de vidanjare, etc.
7.5. Actul administrativ al autorităţii competente pentru protecţia mediului, măsuri de diminuare a impactului, măsuri de compensare, modalitatea de integrare a prevederilor acordului de mediu, de principiu, în documentaţia tehnico-economică

S-a anexat documentatia necesara pentru obtinerea Acordului de mediu.

7.6. Avize, acorduri şi studii specifice, după caz, care pot condiţiena'soluţilile tehnice

a) studiu privind posibilitatea utilizării unor sisteme alternative de eficienţă ridicata pentru creşterea performanţei energetice;

Nu este cazul.
b) studiu de trafic şi studiu de circulaţie, după caz;

Nu este cazul.
c) raport de diagnostic arheologic, în cazul intervenţiilor în situri arheôloǵce;

Nu este cazul.
d) studiu istoric, în cazul monumentelor istorice;

Nu este cazul.
e) studii de specialitate necesare în funcţie de specificul investiţiei.

- Expertiza tehnica - pusa la dispozitie de Beneficiar;
- Studiu geotehnic - pus la dispozitie de Beneficiar;
- Studiu topografic - pus la dispozitie de Beneficiar;
- Studiu hidrologic - pus la dispozitie de Beneficiar;
- Studiu hidraulic - pus la dispozitie de Beneficiar;

Elaborat,
Ing. Titi TOMA

Verificat,

OPERATOR ECONOMIC
S.C. CONSIT S.A.

CGIG日T CONSULTANTA PENTRU INFRASTRUCTUFI TERESTRE

VERIFICAT,
Ing. Danjela Toma
CONSULTANTA PENTRUINFRASTRUCTURI TERESTRE
$\underbrace{\text { COMSIT }}$

DEVIZ GENERAL - SOLUTIA 1
al oblectıvului de investıţil
POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA

Nr. Crt.	CATEGORII DE UUCRAR!	U.M.	CANTITATE	PRET UNITAR (RON)	VALOARE (RON)
0	2	3	4	5	6
	1. LUCRARI DIVERSE				
1	Drumuri tehnologice (inclusiv dezafectare)	km	0.10		
2	Umpluturi la platforme (inclusiv dezafectare)	m^{3}	180		
3	Sistem rutier la platforme	m^{2}	600		
4	Semnalizare pe timpul executiei	set	1.00		
	TOTAL LUCRARI DVEREE				
	2. LUCRARI LA SUPRASTRUCTURA				
5	Desfacere cale pe tot podul	m^{2}	348.66		
6	Desfacere cale pe trotuare	m	89.40		
7	Desfacere parapet pietonal	m	89.40		,
8	Demolarea betonului armat din suprastructura	m^{3}	26.88		
9	Schele de lucru	m^{2}	480.00		
10	Peparatii cu mortare si betoane speciale	m^{2}	172.80		
11	Protectie cu vopsea specială	m^{2}	576.00)
12	Schele de susţinere pentru consolele de trotuar	m^{2}	345.60		
13	Cofraje pentru suprastructura	m^{2}	230.40		
14	Beton în placa suprastructură C35/45	m^{3}	134.40		1
15	Armaturi S500 - suprastructură	t	10.75		7
16	Armaturi S235-suprastructura	t	2.69	-	
17	Perforari pentru ancore	m	375.00	... J	
18	Anicore matate	m	375.00		…......
	TOTAL LUCRARI SUPRASTRUCTURA				$)$
	3. LUCRARI LA CALE PE POD				
19	Hidroizolatie pentru poduri	m^{2}	528.00	-	.,
20	Beton in grinda parapet directional C35/45	m^{3}	9.22	;	, ,)
21	Armaturi S500	t	0.74		;
22	Armaturi S235	t	0.18	-	\ldots
23	Parapet pietonal nou	m	88.40		5
24	Parapet directional H4b	m	89.40		. .,.
25	Rosturi de dilatatie $D=50 \mathrm{~mm}$	m	25.00		
26	Trotuare T=1.50 m (umputura, tevi PVC, cale, borduri mici)	m	89.40	;	
27	Calea pe tot podul	m^{2}	348.66	3	3
28	Marcaje (tot podul)	km	0.03		...)
	TOTAL LUCRARI LA CALE PE POD				\ldots, \ldots ?
	4. LUCRAR! IA !				
29	Demolarea betonului din elevaţiile existente	m^{3}	13.00)	-, -.)
30	Schele de lucru	m^{2}	85.00)
31	Reparatii cu mortare si betoane speciale	m^{2}	42.50		-, --
32	Protectie cu vopsea specială	m^{2}	85.00		;
33	Perforari pentru ancore	m	100.00)	-,
34	Ancore matate	m	100.00		$)$
35	Cofraje pentru elevatii	m^{2}	50.40)	-
36	Beton in elevatii C35/45	m^{3}	25.20	3	1
37	Armaturi S500	t	2.02	1	
38	Armaturi S235	t	0.50	J	

0	2	3	4	5	6
39	Curatare si rostuire pereu sferturi de con	mp	50.24		
	TOTAL INFRASTRUCTURA				
	5. LUCRARI LA RAMPE				
40	Sapatura cu h < 4,00m	m^{3}	270.00		
41	Desfacere cale pe rampe	m^{2}	468.00		
42	Beton in fundatii dren $\mathrm{C} 25 / 30$	m^{3}	3.20		
43	Hidroizolatie in spatele culeelor (inclusiv geodren)	m^{2}	40.00		
44	Dren din piatra bruta (inclusiv filitu geotextil)	m^{3}	17.60		
45	Umpluturi	m^{3}	489.00		
46	Placi de racordare $\mathrm{L}=3.00 \mathrm{~m}$ (inclusiv grinda rezemare)	buc	14.00		
47	Refacere sistem rutier (inclusiv fundatie drum) $15,0 \mathrm{~m} \times 2$	mp	240.00		
48	Acostamente	ml	100.00		
49	Beton C35/45 in racordare trotuare la acostamene	m^{3}	8.00		
50	Marcaie pe rampe	km	0.10		
51	Curatare si rostuire casiuri	mp	40.00		
52	Reparatii scari pe taluz (inclusiv balustrada)	m	12		
	TOTAL LUCRARI RAMPE				
	6. LUCRARI LA ALBIE				
53	Calibrare albei	$100 \mathrm{~m}^{3}$	30		
54	Beton in dale C25/30	m^{3}	20.00		
55	Cofraie	m^{2}	5		
56	Curatare si rostuire dale existente in albie	mp	150.00		
	TOTAL LUCRARI ALBIE				
	7. RELOCARE UTILITATI				
57	Relocare/protectie utilitati	buc	1		
	TOTAL LUCRARI INVESTITIE				

Calculul detaliat al cantitatilor se regaseste in anexa "CALCUL CANTITATI POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA"

EVALUARE ESTIMATIVA - POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA - SOLUTIA 1

$\begin{aligned} & \text { Nr. } \\ & \text { Crt. } \end{aligned}$	CATEGORII DE LUCRARI	U.M.	Cantitate	PRET (RON)	VALOARE (RON)
0	2	3	4	5	6
	1. LUCRARI DIVERSE				
1	Drumuri tehnologice (inclusiv dezafectare)	km	0.10)	
2	Umpluturi la platforme (inclusiv dezafectare)	m^{3}	180		
3	Sistem rutier la platforme	m^{2}	600		
4	Semnalizare pe timpul executiei	set	1.00		
	TOTAL LUCRARI DIVERSE				
	2. LUCRARI LA SUPRASTRUCTURA				
5	Desfacere cale pe tot podul	m^{2}	348.66		
6	Desfacere cale pe trotuare	m	89.40		
7	Desfacere parapet pietonal	m	89.40		
8	Demolarea betonului armat din suprastructura	m^{3}	26.88		
9	Schele de lucru	m^{2}	480.00		
10	Reparatil cu mortare si betoane speciale	m^{2}	172.80		
11	Protectie cu vopsea specială	m^{2}	576.00		
12	Schele de susţinere pentru consolele de trotuar	m^{2}	345.60		
13	Cofraje pentru suprastructura	m^{2}	230.40		
14	Beton în placa suprastructură C35/45	m^{3}	134.40		
15	Armaturi S500 - suprastructură	t	10.75		
16	Armaturi S235-suprastructura	t	2.69)	
17	Perforari pentru ancore	m	375.00	J	
18	Ancore matate	m	375.00		
	TOTAL LUCRARI SUPRASTRUCTURA				
	3. LUCRARI LA CALE PE POD				
19	Hidroizolatie pentru poduri	m^{2}	528.00		
20	Beton în grinda parapet directional C35/45	m^{3}	9.22		
21	Armaturi 5500	t	0.74		
22	Armaturi S235	t	0.18	1	
23	Parapet pietonal nou	m	83.40		
24	Parapet directional H4b	m	89.40	;	
25	Rosturi de dilatatie $\mathrm{D}=50 \mathrm{~mm}$	m	25.00		
26	Trotuare $\mathrm{T}=1.50 \mathrm{~m}$ (umputura, tevi PVC, cale, borduri mici)	m	89.40	j	
27	Calea pe tot podul	m^{2}	348.66		
28	Marcaje (tot podul)	km	0.03)	
	TOTAL LUCRARI LA CALE PE POD				
	4. LUCRARI LA INFRASTRUCTURA				
29	Demolarea betonului din elevaţiile existente	m^{3}	13.00		
30	Schele de lucru	m^{2}	85.00		
31	Reparatii cu mortare si betoane speciale	m^{2}	42.50		1
32	Protectie cu vopsea specială	m^{2}	85.00		
33	Perforari pentru ancore	m	100.00		
34	Ancore matate	m	100.00		
35	Cofraje pentru elevatii	m^{2}	50.40		$)$
36	Beton in elevatii C35/45	m^{3}	25.20		
37	Armaturi S500	t	2.02	,	
38	Armaturi S235	t	0.50		

0	2	3	4	5	6
39	Curatare si rostuire pereu sferturi de con	mp	50.24		
	TOTAL INFRASTRUCTURA				
	5. LUCRARI LA RAMPE				
40	Sapatura cu h < 4,00m	m^{3}	270.00		
41	Desfacere cale pe rampe	m^{2}	468.00		
42	Beton in fundatii dren C25/30	m^{3}	3.20		
43	Hidroizolatie in spatele culeelor (inclusiv geodren)	m^{2}	40.00		
44	Dren din piatra bruta (inclusiv filtru geotextil)	m^{3}	17.60		
45	Umpluturi	m^{3}	489.00		
46	Placi de racordare L=3.00m (inclusiv grinda rezemare)	buc	14.00		
47	Refacere sistem rutier (inclusiv fundatie drum) $15,0 \mathrm{~m} \times 2$	mp	240.00		
48	Acostamente	ml	100.00		
49	Beton C35/45 in racordare trotuare la acostamene	m^{3}	8.00		
50	Marcaje pe rampe	km	0.10		
51	Curatare si rostuire casiuri	mp	40.00		
52	Reparatii scari pe taluz (inclusiv balustrada)	m	12		
	TOTAL LUCRARI RAMPE				
	6. LUCRARI LA ALBIE				
53	Calibrare albei	$100 \mathrm{~m}^{3}$	30		
54	Beton in dale C25/30	m^{3}	20.00		
55	Cofraje	m^{2}	5		
56	Curatare si rostuire dale existente in albie	mp	150.00		
	TOTAL LUCRARI ALBIE				
	7. RELOCARE UTILITATI				
57	Relocare/protectie utilitati	buc	1		
	TOTAL LUCRARI INVESTITIE				

Calculul detaliat al cantitatilor se regaseste in anexa "CALCUL CANTITATI POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA"

Proiectant,

DEVIZ GENERAL - SOLUTIA 2

ai obıectivuiuı de ınvestıţı

POD PE DN 59 KM $48+391$ PESTE RAUL BARZAVA LA DENTA

EVALUARE ESTIMATIVA - POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA -SOLUTIA 2

Nr. Crt.	CATEGORII DE LUCRAR!	U.M.	CAntitate	PRET UNITAR (RON)	VALOARE (RON)
0	2	3	4	5	6
	1. LUCRARI DIVERSE				
1	Drumuri tehnologice (inclusiv dezafectare)	km	0.10		
2	Umpluturi la platforme (inclusiv dezafectare)	m^{3}	180		
3	Sistem rutier la platforme	m^{2}	600		
4	Semnalizare pe timpul executiei	set	1.00		
	TOTAL LUCRARI DIVERSE				
	2. LUCRARI LA SUPRASTRUCTURA				
5	Demolarea betonului armat din suprastructura	m^{3}			
6	Palei provizorii	m^{2}	487.50		
7	Schelet metalic uzinat	t	132.60		
8	Montare schelet metalic (transport, montare, inclusiv ripare)	t	132.60		
9	Cofraje pentru dala de beton	m^{2}	1131.00		
10	Beton in placa suprastructură C35/45	m^{3}	155.52		
11	Armaturi S500 - suprastructură	t	12.44		
12	Armaturi S235-suprastructura	t	3.11		
	TOTAL LUCRARI SUPRASTRUCTURA				
	3. LUCRARI LA CALE PE POD				
13	Hidroizolatie pentru poduri	m^{2}	579.15		
14	Parapet pietonal nou	m	89.40		
15	Parapet directional H45	m	89.40		
16	Rosturi de dilatatie $\mathrm{D}=50 \mathrm{~mm}$	m	27.00		
17	Trotuare T=1.50 m (umputura, tevi PVC, cale, borduri mici)	m	89.40		
18	Calea pe tot podul	m^{2}	348.66		
19	Marcaje (tot podul)	km	0.03		
	TOTAL LUCRARI LA CALE PE POD				
	4. LUCRARI LA INFRASTRUCTURA				
20	Demolarea betonului din elevatiile existente	m^{3}	153.00		
21	Schele de lucruin jurul culeelor	m^{2}	85.00		
22	Sapatura cu h $<4,00 \mathrm{~m}$	m^{3}	297.50		
23	Protectie cu vopsea specială	m^{2}	119.00		
24	Perforari pentru ancore	m	500.00		
25	Ancore matate	m	500.00		
26	Minipiloti forati (inclusiv armatura)	buc	120.00		
27	Cofraje pentru elevatii	m^{2}	300.00		
28	Beton in elevatii C25/30	m^{3}	190.00		
29	Armaturi S500	t	15.20		
30	Armaturi S235	t	3.80		
31	Umpluturi in jurul culeelor	m^{3}	238.00		
32	Pereu sferturi de con	mp	50.24		
	TOTAL INFRASTRUCTURA				---,
	5. LUCRARI LA RAMPE				
33	Sapatura cu $\mathrm{h}<4,00 \mathrm{~m}$	m^{3}	270.00		
34	Desfacere cale pe rampe	m^{2}	468.00		
35	Beton in fundatii dren $\mathrm{C} 25 / 30$	m^{3}	3.20		

0	2	3	4	5	6
36	Hidroizolatie in spatele culeelor (inclusiv geodren)	m^{2}	40.00		
37	Dren din piatra bruta (inclusiv filtru geotextil)	m^{3}	17.60		
38	Umpluturi	m^{3}	489.00		
39	Placi de racordare L=3.00m (inclusiv grinda rezemare)	buc	14.00		
40	Refacere sistem rutier (inclusiv fundatie drum) $15,0 \mathrm{~m} \times 2$	mp	240.00		
41	Acostamente	ml	100.00		
42	Beton C35/45 in racordare trotuare la acostamene	m^{3}	8.00		
43	Marcaje pe rampe	km	0.10		
44	Casiuri	mp	40.00		
45	Scari pe taluz (inclusiv balustrada)	m	12		
	TOTAL LUCRARI RAMPE				
	6. LUCRARI LA ALBIE				
46	Calibrare albei	$100 \mathrm{~m}^{3}$	30		
47	Beton in dale C25/30	m^{3}	20.00		
48	Cofraje	m^{2}	5		
49	Curatare si rostuire dale existente in albie	mp	150.00		
	TOTAL LUCRARI ALBIE				
	7. Deviere trafic pe rute ocolitoare				
50	Reabilitare drum existent pentru ridicare la clasa de DN	km	11.14		
	8. RELOCARE UTILITATI				
51	Relocare/protectie utilitati	buc	1		
	TOTAL LUCRARI INVESTITIE				

[^0]

DEVIZ GENERAL - SOLUTIA 3
al obiectıvuiul de investiţı
POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA

Nr .	Denumirea capitolelor şi subcapitolelor de cheltuiell	Valoare fără TVA	TVA	Valoare cu TVA
		lei	lei	lei
1	2	3	4	5
CAPITOLUL 1 Cheltuieli pentru obţinerea şi amenajarea terenului				
	Obținerea terenului		0.00	0.00
	Amenajarea terenului			
1.3	Amenajári pentru protecţia mediului şi aducerea terenului la starea iniţialá	0.00	0.00	0.00
1.4Cheltuieli pentru relocarea/protecția utilităţilor				
Total capitol 1				
CAPITOLUL 2 Cheltuieli pentru asigurarea utilităţilor necesare obiectivului de investiţii				
2.1		0.00	0.00	0.00
Total capitol 2		0.00	0.00	0.00
CAPITOLUL 3 Cheltuieli pentru proiectare şi asistență tehnică				
3.1	Studii			
	3.1.1. Studii de teren			
	3.1.2. Raport privind impactul asupra mediului	0.00	0.00	0.00
	3.1.3. Alte studii specifice	0.00	0.00	0.00
3.2	Documentaţıl-suport şı cheltuleil pentru obţinerea de avize, acorduri şi autorizații	0.00	0.00	0.00
3.3	Expertizare tehnică)
3.4	Certificarea performanţei energetice şi auditul energetic al clădirilor	0.00	0.00	0.00
3.5	Proiectare			
	3.5.1. Temă de proiectare	0.00	0.00	0.00
	3.5.2. Studiu de prefezabilitate	0.00	0.00	0.00
	3.5.3. Studiu de fezabilitate/documentaţie de avizare a lucrărilor de intervenţii şi deviz general			
	3.5.4. Documentaţiile tehnice necesare în vederea obţinerii avizelor/acordurilor/autorizaţiilor	0.00	0.00	0.00
	3.5.4. Documentaţitile tehnice necesare în vederea obţinerii avizelor/acordurilor/autorizațiilor	0.00	0.00	0.00
	3.5.5. Verificarea tehnicǎ de calitate a proiectului tehnic şi a detaliilor de execuție			
	3.5.6. Proiect tehnic şi detalii de execuţie			
3.6	Organizarea procedurior de achiziţie		0.00	0.00
3.7	Consultanţă	0.00	0.00	0.00
	3.7.1. Managementul de proiect pentru obiectivul de investiţii		0.00	0.00
	3.7.2. Auditul financiar		0.00	0.00
3.8	Asistenţă tehnică			,
	3.8.1. Asistenţă tehnică din partea proiectantului			
	3.8.1.1. pe perioada de execuţie a lucrărilor			
	3.8.1.2. pentru participarea proiectantului la fazele incluse în programul de control al lucrărilor de execuţie			
	3.8.2. Dirigenţie de şantier			
Total capitol 3				
CAPITOLUL 4 Cheltuieli pentru investiţia de bază				
4.1	Construcţii şi instalaţii			
4.2	Montaj utilaje, echipamente tehnologice şi funcţionale	0.00	0.00	0.00
4.3	Utilaje, echipamente tehnologice şi funcționale care necesită montaj	0.00	0.00	0.00
4.4	Utilaje, echipamente tehnologice şi funcţionale care nu necesită montaj şi echipamente de transport	0.00	0.00	0.00
4.5	Dotări	0.00	0.00	0.00
4.6	Active necorporale	0.00	0.00	0.00
Total capitol 4				
CAPITOLUL 5 Alte cheltuieli				

EVALUARE ESTIMATIVA - POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA -SOLUTIA 3

Nr. Crt.	CATEGORII DE LUCRARI	U.M.	CANTITATE	PRET UNITAR (RON)	VALOARE (RON)
0	2	3	4	5	6
	1. LUCRARI DIVERSE				
1	Drumuri tehnologice (inclusiv dezafectare)	km	0.10)
2	Umpluturi la platforme (inclusiv dezafectare)	m^{3}	180		
3	Sistem rutier la platforme	m^{2}	600		
4	Semnalizare pe timpul executiei	set	1.00		
	TOTAL LUCRARI DIVERSE				
	2. LUCRARI LA SUPRASTRUCTURA				
5	Demolarea betonului armat din suprastructura	m^{3}	780.00		
6	Palei provizorii	m^{2}	487.50		
7	Schelet metalic uzinat	t	132.60	1	
8	Montare schelet metalic (transport, montare, inclusiv ripare)	t	132.60		
9	Cofraje pentru dala de beton	m^{2}	1131.00		
10	Beton in placa suprastructură C35/45	m^{3}	155.52		
11	Armaturi S500 - suprastructură	t	12.44		
12	Armaturi S235-suprastructura	t	3.11		
	TOTAL LUCRARI SUPRASTRUCTURA				
	3. LUCRARI LA CALE PE POD				
13	Hidroizolatie pentru poduri	m^{2}	579.15		
14	Parapet pietonal nou	m	89.40		
15	Parapet directional H4L	m	89.40		
16	Rosturi de dilatatie $\mathrm{D}=50 \mathrm{~mm}$	m	27.00		
17	Trotuare $\mathrm{T}=1.50 \mathrm{~m}$ (umputura, tevi PVC, cale, borduri mici)	m	89.40		
18	Calea pe tot podul	m^{2}	348.66		
19	Marcaje (tot podul)	km	0.03		
	TOTAL LUCRARI LA CALE PE POD				
	4. LUCRARI LA INFRASTRUCTURA				
20	Demolarea betonului din elevaţili existente	m^{3}	260.00		
21	Schele de lucru in jurul culeelor	m^{2}	85.00)
22	Sapatura cu h $<4,00 \mathrm{~m}$	m^{3}	816.00		
23	Protectie cu vopsea specială	m^{2}	119.00		
24	Coloane de diametru mare (inclusiv armatura)	buc	16.00		
25	Cofraje pentru culee	m^{2}	500.00		
26	Beton in culee C25/30	m^{3}	520.00		
27	Armaturi S500	t	41.60		
28	Armaturi S235	t	10.40)
29	Umpluturi in jurul culeelor	m^{3}	238.00		
30	Pereu sferturi de con	mp	40.00		
	TOTAL INFRASTRUCTURA				;
	5. LUCRARI LA RAMPE				
33	Sapatura cu h < 4,00m	m^{3}	270.00		
34	Desfacere cale pe rampe	m^{2}	468.00	\ldots	
35	Beton in fundatii dren C25/30	m^{3}	3.20		
36	Hidroizolatie in spatele culeelor (inclusiv geodren)	m^{2}	40.00		
37	Dren din piatra bruta (inclusiv filtru geotextil)	m^{3}	17.60		

0	2	3	4	5	6
38	Umpluturi	m^{3}	489.00		
39	Placi de racordare $\mathrm{L}=3.00 \mathrm{~m}$ (inclusiv grinda rezemare)	buc	14.00		
40	Refacere sistem rutier (inclusiv fundatie drum) $15,0 \mathrm{~m} \times 2$	mp	240.00		
41	Acostamente	ml	100.00		
42	Beton C35/45 in racordare trotuare la acostamene	m^{3}	8.00		
43	Marcaje pe rampe	km	0.10		
44	Casiuri	mp	40.00		
45	Scari pe taluz (inclusiv balustrada)	m	12		
	TOTAL LUCRARI RAMPE				
	6. LUCRARI LA ALBIE				
46	Calibrare albei	$100 \mathrm{~m}^{3}$	30		
47	Beton in dale C25/30	m^{3}	20.00		
48	Cofraje	m^{2}	5		
49	Curatare si rostuire dale existente in albie	mp	150.00		
	TOTAL LUCRARI ALBIE				
	7. Deviere trafic pe rute ocolitoare				
50	Reabilitare drum existent pentru ridicare la clasa de DN	km	11.14		
	8. RELOCARE UTILITATI				
50	Relocare/protectie utilitati	buc	1		
	TOTAL LUCRARI INVESTITIE				

PARTE DESENATA

"POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA"

BENEFICIAR: DRDP TIMISOARA
FAZA DE PROIECTARE: D.A.L.I.
Rev. 02 cnf. CTE DRDP Timisoara - adresa nr. $40 / 155$ din 04.03.2021
CTE DRDP Timisoara din 26.02.2021

[^0]: Calculul detaliat al cantitatilor se regaseste in anexa "CALCUL CANTITATI POD PE DN 59 KM 48+391 PESTE RAUL BARZAVA LA DENTA"

